Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải nhanh bài toán số phức bằng máy tính Casio - Nguyễn Việt Anh

Tài liệu gồm 12 trang hướng dẫn các phương pháp giải nhanh bài toán số phức bằng máy tính Casio – Vinacal kèm theo các bài tập rèn luyện, tài liệu được biên soạn bởi tác giả Nguyễn Việt Anh, đây là các kỹ thuật giải toán mà các em nên tìm hiểu để phát huy tối đa công dụng của máy tính cầm tay trong giải toán số phức, giúp tìm ra hướng giải và tiết kiệm thời gian. A. Các phép tính thông thường, tính moldun, argument, conjg của 1 số phức hay 1 biểu thức số phức và tính số phức có mũ cao. Bài toán tổng quát : Cho Z = z1.z2 – z3.z4/z5. Tìm z và tính modun, argument và số phức liên hợp của số phức Z. Phương pháp giải : + Để máy tính ở chế độ Deg không để dưới dạng Rad và vào chế độ số phức Mode 2. + Khi đó chữ “i” trong phần ảo sẽ là nút “ENG” và ta thực hiện bấm máy như 1 phép tính bình thường. Tính Moldun, Argument và số phức liên hợp của số phức Z: + Moldun: Ấn shift + hyp. Xuất hiện dấu trị tuyệt đối thì ta nhập biểu thức đó vào trong rồi lấy kết quả. + Tính Arg ấn Shift 2 chọn 1. Tính liên hợp ấn shift 2 chọn 2. B. Tìm căn bậc 2, chuyển số phức về dạng lượng giác và ngược lại. 1. Tìm căn bậc 2 của số phức và tính tổng hệ số của căn đó. Bài toán tổng quát : Cho số phức z thỏa mãn z = f(a, bi). Tìm 1 căn bậc 2 của số phức và tính tổng, tích hoặc 1 biểu thức của hệ số. Phương pháp giải : Cách 1: Đối với việc tìm căn bậc 2 của số phức cách nhanh nhất là ta bình phương các đáp án xem đáp án nào trùng số phức đề cho. Cách 2: Không vào chế độ Mode 2. Ta để máy ở chế độ Mode 1. + Ấn shift + sẽ xuất hiện và ta nhập Pol(phần thực, phần ảo). Lưu ý dấu “,” là shift) sau đó ấn =. + Ấn tiếp Shift – sẽ xuất hiện và ta nhập Rec(√X, Y:2) sau đó ấn bằng ta sẽ ra lần lượt là phần thực và phần ảo của số phức. 2. Đưa số phức về dạng lượng giác và ngược lại. Bài toán tổng quát : Tìm dạng lượng giác (bán kính, góc lượng giác) của số phức thỏa mãn z = f(a, bi). Phương pháp giải : + Ấn shift chọn 4 (r < θ) sau khi nhập số phức. + Ấn = sẽ ra kế quả a < b trong đó r = a, góc = b. Chuyển từ lượng giác về số phức: chuyển về radian: + Nhập dạng lượng giác của số phức dưới dạng: bán kính < góc (với < là shift (-)). + Ấn shift 2 chọn 4 (a = bi) và lấy kết quả. 3. Các phép toán cơ bản hoặc tính 1 biểu thức lượng giác của số phức. Làm tương tự như dạng chính tắc của số phức. [ads] C. Phương trình số phức và các bài toán liên quan. 1. Phương trình không chứa tham số. Bài toán tổng quát : Cho phương trình az^2 + bz + c = 0. Phương trình có nghiệm (số nghiệm) là? Phương pháp giải : + Dùng cho máy Vinacal: Mode 2 vào chế độ phức và giải phương trình số phức như phương trình hàm số như bình thường và nhân được nghiệm phức. + Đối với Casio fx: Nhiều phương trình có nghiệm thực nên cách tốt nhất ta sẽ nhập phương trình đề cho vào máy tính và thực hiện Calc đáp án để tìm ra đáp án. 2. Phương trình tìm tham số. Bài toán tổng quát : Cho phương trình az^2 + bz + c = 0. Biết phương trình có nghiệm zi = Ai. Tìm a, b, c. Phương pháp giải : + Mode 2 và lần lượt thay các hệ số ở đáp án vào đề. + Dùng Mode 5 để giải phương trình nếu phương trình nào ra nghiệm như đề cho thì đó là đáp án đúng. D. Tìm số phức thỏa mãn điều kiện phức tạp và tính tổng, tích … hệ số của số phức (Ngoài cách hỏi trên còn có thể hỏi: Tìm phần thực, phần ảo hay modun … của số phức thỏa mãn điều kiện đề bài). Bài toán tổng quát : Cho số phức z = a + bi thỏa mã điều kiện (phức tạp kèm cả liên hợp …). Tìm số phức z? Phương pháp giải : + Nhập điều kiện đề cho vào Casio. Lưu ý thay z = a + bi và liên hợp của z = a – bi. + Calc a = 1000 và b = 100. + Sau khi ra kết quả là : X + Yi ta sẽ phân tích X và Y theo a và b để được 2 phương trình bậc nhất 2 ẩn để giải tìm ra a và b. + Lưu ý: Khi phân tích ưu tiên cho hệ số a nhiều nhất có thể. + Sau khi tìm được a, b ta làm nốt yêu cầu của đề. E. Tìm tập hợp biểu diễn của số phức thỏa mãn điều kiện và hình học số phức. Bài toán tổng quát : Trên mặt phẳng hệ trục tọa độ Oxy tìm tập hợp biểu diễn của số phức z thỏa mã điều kiện. Phương pháp giải : Ưu tiên việc sử dụng 2 máy tính để giải: + Máy thứ 1 ta nhập điều kiện của đề cho với z và liên hợp z dạng tổng quát. + Máy thứ 2 lần lượt các đáp án. Ta lấy 2 điểm thuộc các đáp án. + Calc 2 điểm vừa tìm vào điều kiện. Cái nào kết quả ra 0 thì đấy là đáp án đúng. F. Cặp số (x, y) thỏa mã điều kiện phức, số số phức phù hợp với điều kiện. Phương pháp giải : + Mode 2 và nhập điều kiện đề cho vào Casio, chuyển hết về 1 vế. + Calc các đáp án. Đáp án nào ra kết quả là 0 thì đó là đáp án đúng.

Nguồn: toanmath.com

Đọc Sách

Bài toán GTLN - GTNN của môđun số phức
Bài toán liên quan đến giá trị lớn nhất và giá trị nhỏ nhất (viết tắt là GTLN – GTNN hoặc min – max) của biểu thức có chứa môđun số phức là một dạng toán vận dụng cao thường gặp trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây, đây là dạng toán ít được đề cập đến trong sách giáo khoa Giải tích 12, do đó đã gây không ít bỡ ngỡ và khó khăn cho các bạn học sinh trong quá trình tiếp cận và tìm hướng giải quyết bài toán. Nhằm giúp bạn đọc nắm được một số phương pháp điển hình để giải bài toán liên quan đến giá trị lớn nhất và giá trị nhỏ nhất của biểu thức có chứa mô đun của số phức, giới thiệu tài liệu bài toán GTLN – GTNN của môđun số phức. Khái quát nội dung tài liệu bài toán GTLN – GTNN của môđun số phức: A. BÀI TOÁN CỰC TRỊ CỦA SỐ PHỨC 1. Các bài toán qui về bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm một biến. Bài toán: Trong các số phức z thoả mãn điều kiện T. Tìm số phức z để biểu thức P đạt giá trị nhỏ nhất, lớn nhất. Từ điều kiện T biến đổi để tìm cách rút ẩn rồi thế vào biểu thức P để được hàm một biến. Tìm giá trị lớn nhất (hoặc nhỏ nhất) tuỳ theo yêu cầu bài toán của hàm số một biến vừa tìm được. [ads] 2. Các bài toán qui về bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của một biểu thức hai biến mà các biến thoả mãn điều kiện cho trước. Để giải được lớp bài toán này, chúng tôi cung cấp cho học sinh các bất đẳng thức cơ bản như: Bất đẳng thức liên hệ giữa trung bình cộng và trung bình nhân, bất đẳng thức Bunhiacốpxki, bất đẳng thức hình học và một số bài toán công cụ sau: a. Bài toán công cụ 1 : Cho đường tròn (T) cố định có tâm I bán kính R và điểm A cố định. Điểm M di động trên đường tròn (T). Hãy xác định vị trí điểm M sao cho AM lớn nhất, nhỏ nhất. b. Bài toán công cụ 2 : Cho hai đường tròn (T1) có tâm I, bán kính R1, đường tròn (T2) có tâm J, bán kính R2. Tìm vị trí của điểm M trên (T1), điểm N trên (T2) sao cho MN đạt giá trị lớn nhất, nhỏ nhất. c. Bài toán công cụ 3 : Cho hai đường tròn (T) có tâm I, bán kính R, đường thẳng ∆ không có điểm chung với (T). Tìm vị trí của điểm M trên (T), điểm N trên ∆ sao cho MN đạt giá trị nhỏ nhất. B. BÀI TẬP MIN – MAX MÔ ĐUN SỐ PHỨC C. LỜI GIẢI CHI TIẾT
Trắc nghiệm VD - VDC số phức - Đặng Việt Đông
Với mục đích hỗ trợ các em học sinh khối 12 trong quá trình học tập nâng cao các dạng toán trong chương trình Giải tích 12 chương 4 – số phức, ôn tập hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, thầy Đặng Việt Đông biên soạn cuốn tài liệu trắc nghiệm vận dụng – vận dụng cao chuyên đề số phức. Tài liệu trắc nghiệm VD – VDC số phức – Đặng Việt Đông gồm 108 trang với các bài tập trắc nghiệm số phức ở mức độ vận dụng và vận dụng cao, được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường, sở GD&ĐT, đề tham khảo – đề minh họa – đề chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, các bài tập về số phức được phân tách thành các dạng toán cụ thể, có đáp án và lời giải chi tiết. [ads] Các dạng toán được đề cập trong tài liệu trắc nghiệm VD – VDC số phức – Đặng Việt Đông: A – LÝ THUYẾT CHUNG 1. Số phức. 2. Phép cộng trừ nhân chia số phức. 3. Tập hợp điểm biểu diễn số phức. 4. Phương trình bậc hai với hệ số thực. 5. Bài toán liên quan đến max – min mô đun số phức. B – BÀI TẬP TRẮC NGHIỆM Dạng 1. Tính toán và các yếu tố trên số phức. Dạng 2. Phương trình, hệ phương trình trên số phức. Dạng 3. Tìm tập hợp điểm, biểu diễn số phức. + Điểm biểu diễn. + Tập hợp điểm biểu diễn là đường thẳng. + Tập hợp điểm biểu diễn là đường tròn. + Tập hợp điểm biểu diễn là hình tròn. + Tập hợp điểm biểu diễn là đường cônic. + Tập hợp điểm biểu diễn là đường cong. + Tập hợp điểm biểu diễn liên quan đa giác. Dạng 4. Số phức có mođun nhỏ nhất, lớn nhất. + Mođun min, max của số phức có tập hợp biểu diễn là đường đường thẳng. + Mođun min, max của số phức có tập hợp biểu diễn là đường tròn, hình tròn. + Mođun min, max của số phức có tập hợp biểu diễn là elip. Dạng 5. Min, max số phức phương pháp đại số. + Áp dụng các tính chất bất đẳng thức, đánh giá. + Áp dụng các bất đẳng thức bunhiacopxki. + Áp dụng phương pháp hàm số. Dạng 6. Min, max số phức phương pháp hình học. Xem thêm : + Trắc nghiệm VD – VDC hàm số – Đặng Việt Đông + Trắc nghiệm VD – VDC mũ – logarit – Đặng Việt Đông + Trắc nghiệm VD – VDC nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông
Các dạng toán số phức thường gặp trong kỳ thi THPTQG
Tài liệu gồm 97 trang được biên soạn và giới thiệu bởi thầy Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm các dạng toán số phức thường gặp trong kỳ thi THPT Quốc gia môn Toán, có đáp án, phân tích và lời giải chi tiết. Tài liệu bổ trợ thầy, cô giáo trong quá trình dạy và các em học sinh lớp 12 trong quá trình học chương trình Giải tích 12 chương 4, cũng như ôn luyện để hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán. Khái quát nội dung tài liệu các dạng toán số phức thường gặp trong kỳ thi THPTQG: VẤN ĐỀ 1 . KHÁI NIỆM SỐ PHỨC – CÁC PHÉP TOÁN SỐ PHỨC VÀ MỘT SỐ BÀI TOÁN LIÊN QUAN. Dạng toán 1. Xác định các yếu tố cơ bản của số phức. + Dạng toán 1.1 Xác định phần thực, phần ảo của số phức. + Dạng toán 1.2 Xác định số phức liên hợp, số phức đối, môđun của số phức. Dạng toán 2. Biểu diễn hình học cơ bản của số phức. Dạng toán 3. Thực hiện các phép tính cộng, trừ, nhân, chia cơ bản của số phức. + Dạng toán 3.1 Phép tính cộng trừ hai số phức. + Dạng toán 3.2 Phép tính nhân, chia hai số phức. Dạng toán 4. Tìm số phức thỏa mãn điều kiện cho trước. + Dạng toán 4.1 Điều kiện cho trước không chứa yếu tố môđun. + Dạng toán 4.2 Điều kiện cho trước chứa yếu tố môđun. [ads] VẤN ĐỀ 2 . BÀI TOÁN TÌM TẬP HỢP ĐIỂM BIỂU DIỄN SỐ PHỨC. Dạng toán 1. Tập hợp điểm biểu diễn số phức là đường tròn. Dạng toán 2. Tập hợp điểm biểu diễn số phức là đường thẳng. Dạng toán 3. Tập hợp điểm biểu diễn số phức là đường conic. Dạng toán 4. Tập hợp điểm biểu diễn số phức là một miền. VẤN ĐỀ 3 . PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC – BÀI TOÁN MIN – MAX SỐ PHỨC. Dạng toán 1. Phương trình bậc hai với hệ số thực. Dạng toán 2. Bài toán min – max số phức.
Số phức và một số ứng dụng - Nguyễn Tài Chung
Tài liệu gồm 45 trang được biên soạn bởi thầy giáo Nguyễn Tài Chung (giáo viên Toán trường THPT Chuyên Hùng Vương, tỉnh Gia Lai) giới thiệu một số ứng dụng của số phức trong việc giải các bài toán liên quan đến chứng minh bất đẳng thức, giải phương trình, hệ phương trình, phương trình hàm đa thức. Khái quát nội dung tài liệu số phức và một số ứng dụng – Nguyễn Tài Chung: BÀI 1 . SỐ PHỨC VÀ MỘT VÀI ỨNG DỤNG • Sử dụng số phức chứng minh bất đẳng thức Ta xét một số ví dụ về dùng số phức để chứng minh bất đẳng thức. Đây là phương pháp rất độc đáo, thú vị, dùng cái ảo để chứng minh cái thực. • Sử dụng số phức giải phương trình, hệ phương trình Một phương trình nghiệm phức f(z) = 0, với z = x + iy, ta biến đổi thành: h(x,y) + ig(x,y) = 0 ⇔ h(x,y) = 0 và g(x,y) = 0. Nghĩa là một phương trình nghiệm phức, bằng cách tách phần thực và phần ảo luôn có thể đưa về hệ phương trình. • Hệ lặp sinh bởi các đa thức đối xứng ba biến • Sử dụng số phức để giải phương trình hàm đa thức Nghiệm của đa thức đóng vai trò quan trọng trong việc xác định một đa thức. Cụ thể, nếu đa thức P(x) bậc n (n ∈ N*) có n nghiệm x1, x2, . . . , xn thì P(x) có dạng P(x) = c(x − x1)(x − x2). . .(x − xn). Tuy nhiên nếu chỉ xét các nghiệm thực thì trong nhiều trường hợp sẽ không đủ số nghiệm. Hơn nữa trong bài toán phương trình hàm đa thức, nếu chỉ xét các nghiệm thực thì lời giải sẽ không hoàn chỉnh. Định lí cơ bản của đại số vì vậy đóng một vai trò hết sức quan trọng trong dạng toán này.