Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 11 môn Toán năm 2021 2022 trường THPT Phan Đình Phùng Quảng Bình

Nội dung Đề cuối học kì 1 (HK1) lớp 11 môn Toán năm 2021 2022 trường THPT Phan Đình Phùng Quảng Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề kiểm tra cuối học kì 1 môn Toán lớp 11 năm học 2021 – 2022 trường THPT Phan Đình Phùng, thành phố Đồng Hới, tỉnh Quảng Bình; đề thi gồm 35 câu trắc nghiệm (07 điểm) và 03 câu tự luận (03 điểm), thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề), đề thi có đáp án trắc nghiệm và hướng dẫn giải chi tiết tự luận các mã đề 111 – 112 – 113 – 114. Trích dẫn đề cuối kì 1 Toán lớp 11 năm 2021 – 2022 trường THPT Phan Đình Phùng – Quảng Bình : + Cho đường thẳng d song song với mặt phẳng (P). Mệnh đề nào sau đây đúng? A. Đường thẳng d có vô số điểm chung với mặt phẳng (P). B. Đường thẳng d có hai điểm chung với mặt phẳng (P). C. Đường thẳng d không có điểm chung với mặt phẳng (P). D. Đường thẳng d có đúng một điểm chung với mặt phẳng (P). + Trong không gian, cho hai đường thẳng song song a và b. Mệnh đề nào sau đây đúng? A. Không tồn tại mặt phẳng đi qua cả hai đường thẳng a và b. B. Có đúng hai mặt phẳng đi qua cả hai đường thẳng a và b. C. Có vô số một mặt phẳng đi qua cả hai đường thẳng a và b. D. Có đúng một mặt phẳng đi qua cả hai đường thẳng a và b. + Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của BC và BD, mặt phẳng (P) đi qua IJ cắt cạnh AC, AD lần lượt tại M, N. Mệnh đề nào dưới đây đúng? A. Hai đường thẳng BC và MN song song. B. Hai đường thẳng IJ và MN song song. C. Hai đường thẳng NJ và BC song song. D. Hai đường thẳng IM và MJ song song. + Một bàn dài có hai dãy ghế đối diện nhau, mỗi dãy gồm 4 ghế. Người ta xếp chỗ ngồi cho 4 học sinh trường A và 4 học sinh trường B vào bàn nói trên. Hỏi có bao nhiêu cách sắp xếp, sao cho bất cứ hai học sinh nào ngồi cạnh nhau hoặc đối diện nhau khác trường với nhau. + Không gian mẫu của phép thử gieo một con súc sắc 6 mặt hai lần có bao nhiêu phần tử?

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2017 2018 sở GD và ĐT Nam Định
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2017 2018 sở GD và ĐT Nam Định Bản PDF Đề thi HK1 Toán lớp 11 năm học 2017 – 2018 sở GD và ĐT Nam Định gồm 1 trang với 2 phần: + Phần I. Trắc nghiệm: gồm 8 câu hỏi, mỗi câu 0.25 điểm + Phần II. Tự luận, gồm 5 câu, chiếm 8 điểm Đề thi có đáp án và lời giải chi tiết.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2017 2018 trường THPT Kim Liên Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2017 2018 trường THPT Kim Liên Hà Nội Bản PDF Đề thi HK1 Toán lớp 11 năm học 2017 – 2018 trường THPT Kim Liên – Hà Nội gồm 4 trang với 2 phần: + Phần trắc nghiệm: gồm 25 câu hỏi, thời gian làm bài 45 phút, đòi hỏi học sinh làm bài nhanh và chính xác. + Phần tự luận: gồm 4 bài toán tự luận, thời gian làm bài 45 phút, kiểm tra khả năng trình bày lời giải của học sinh. Đề thi có đáp án . Trích dẫn đề thi : + Cho hình bình hành ABCD, biết A và B cố định, điểm C di động trên đường thẳng Δ cố định. Khẳng định nào sau đây là đúng? A. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép đối xứng trục AB B. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép tịnh tiến theo vectơ BA C. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép đối xứng tâm I (I là trung điểm của AB) D. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép tịnh tiến theo vectơ AB [ads] + Cho hàm số y = tanx. Khẳng định nào sau đây là sai? A. Hàm số là hàm số chẵn B. Hàm số tuần hoàn với chu kỳ π C. Hàm số đồng biến trên mỗi khoảng (-π/2 + kπ; π/2 + kπ) k ∈ Z D. Tập xác định của hàm số là R\(π/2 + kπ) k ∈ Z + Trên giá sách có 6 quyển sách tiếng Việt khác nhau, 4 quyển sách tiếng Anh khác nhau, 7 quyển sách tiếng Pháp khác nhau. Hỏi có bao nhiêu cách lấy từ giá trên 3 quyển sách sao cho có đủ cả sách tiếng Việt, tiếng Anh và tiếng Pháp? A. 59   B. 17 C. 680   D. 168 Bạn đọc có thể theo dõi các đề thi HK1 Toán lớp 11
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2017 2018 trường THPT Lý Thánh Tông Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2017 2018 trường THPT Lý Thánh Tông Hà Nội Bản PDF Đề thi HK1 Toán lớp 11 năm học 2017 – 2018 trường THPT Lý Thánh Tông – Hà Nội gồm 4 câu hỏi trắc nghiệm và 25 câu hỏi tự luận, thời gian làm bài 90 phút, đề thi HK1 Toán lớp 11 có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho tứ diện MNPQ. Gọi A, B là hai điểm phân biệt cùng thuộc đường thẳng MN; C, D là hai điểm phân biệt cùng thuộc đường thẳng PQ. Khi đó AC và BD có vị trí tương đối là: A. AC và BD chéo nhau B. AC ≡ BD C. AC cắt BD D. AC // BD [ads] + Hình chóp tứ giác S.ABCD, đáy ABCD là hình chữ nhật. Gọi M,N,P lần lượt là các điểm trên BC, DC và SC sao cho SC = 4SP, CM = 3MB, CN = 3ND. 1. Xác định giao tuyến của hai mặt phẳng (SAC) và (SBD) 2. Chứng minh SD song song với mặt phẳng (MNP) + Có 2 chiếc hộp, mỗi hộp chứa 5 chiếc thẻ đều được đánh số từ 1 đến 5. Từ mỗi hộp rút ngẫu nhiên ra 1 chiếc thẻ. Tính xác suất để rút được 2 thẻ có tổng số ghi trên 2 tấm thẻ bằng 7? File WORD (dành cho quý thầy, cô):
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2016 2017 trường THPT Yên Khánh B Ninh Bình
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2016 2017 trường THPT Yên Khánh B Ninh Bình Bản PDF Đề thi HK1 Toán lớp 11 năm học 2016 – 2017 trường THPT Yên Khánh B – Ninh Bình gồm 25 câu hỏi trắc nghiệm và 4 câu hỏi tự luận. Trích một số câu trong đề thi: 1. Khẳng định nào sau đây là khẳng định đúng? A. Hai đường thẳng phân biệt không song song thì chéo nhau B. Hai đường thẳng không có điểm chung thì chéo nhau C. Hai đường thẳng lần lượt nằm trên hai mặt phẳng phân biệt thì chéo nhau D. Hai đường thẳng chéo nhau thì không có điểm chung 2. Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M N, lần lượt là trung điểm SD, BC. a) Tìm giao tuyến của (SAC) và (SBD) b) Chứng minh rằng MN // (SAB) 3. Đội thanh niên xung kích của trường THPT Yên Khánh B có 12 học sinh gồm 5 học sinh lớp 12, 4 học sinh lớp 11 và 3 học sinh lớp 10. Chọn ngẫu nhiên 4 học sinh đi làm nhiệm vụ. Tính xác suất để 4 học sinh được chọn thuộc không quá 2 trong 3 lớp trên.