Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

10 đề thi chất lượng giữa học kỳ 2 Toán 9

THCS. giới thiệu đến bạn đọc tài liệu tuyển tập 10 đề thi chất lượng giữa học kỳ 2 Toán 9, bộ đề được biên soạn bởi thầy Lương Tuấn Đức nhằm giúp các em học sinh lớp 9 tự ôn tập để chuẩn bị cho kỳ kiểm tra định kỳ môn Toán 9 giai đoạn giữa học kỳ 2 của năm học. Các đề thi chất lượng giữa học kỳ 2 Toán 9 trong tài liệu được biên soạn theo hình thức tự luận với 05 câu hỏi và bài toán ở mỗi đề thi, đây là dạng đề được nhiều trường Trung học Cơ sở và Phòng Giáo dục & Đào tạo áp dụng, học sinh làm bài trong 90 phút. [ads] Trích dẫn tài liệu 10 đề thi chất lượng giữa học kỳ 2 Toán 9 : + Cho nửa đường tròn (O;R), đường kính AB, K là điểm chính giữa cung AB. Trên cung KB lấy một điểm M (M khác K, B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP song song với KM, Q là giao điểm của AP với BM, E là giao điểm của BP và AM. 1. Chứng minh PQME là tứ giác nội tiếp. 2. Chứng minh hai tam giác AKN, BKM bằng nhau và AM.BE = AN.AQ. 3. Gọi R, S lần lượt là giao điểm thứ hai của QA, QB với đường tròn ngoại tiếp tam giác OMP. Chứng minh khi M di động trên cung KB thì trung điểm I của RS luôn nằm trên một đường cố định. + Trong quý I năm 2018, hai đội thuyền đánh cá bắt được tổng cộng 360 tấn cá. Sang quý I năm 2019 đội thứ nhất vượt mức 10% và đội thứ hai vượt mức 8% nên cả hai đội đánh bắt được 393 tấn. Hỏi quý I mỗi năm mỗi đội đánh bắt được bao nhiêu tấn cá? + Cho parabol (P): y = x^2 và đường thẳng d: y = ax – a. 1. Tìm a để đường thẳng d cắt trục tung tại điểm có hoành độ nhỏ hơn 3. 2. Tìm a để (P) cắt d tại hai điểm M(x1;y1), N(x2;y2) thỏa mãn |x1 – x2| ≥ √5.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra giữa HK2 Toán 9 năm 2018 - 2019 trường chuyên Hà Nội - Amsterdam
Đề kiểm tra giữa HK2 Toán 9 năm 2018 – 2019 trường THPT chuyên Hà Nội – Amsterdam được biên soạn nhằm kiểm tra lại các chủ đề Toán 9 mà học sinh đã học: giải hệ phương trình, giải toán bằng cách lập hệ phương trình, bài toán đường tròn, tìm giá trị lớn nhất và nhỏ nhất của biểu thức. Trích dẫn đề kiểm tra giữa HK2 Toán 9 năm 2018 – 2019 trường THPT chuyên Hà Nội – Amsterdam : + Giải bài toán sau bằng cách lập hệ phương trình: Một nhóm gồm 15 học sinh nam và nữ, tham gia buổi lao động trồng cây. Cuối buổi lao động, thầy giáo nhận thấy các bạn nam trồng được 30 cây, các bạn nữ trồng được 36 cây. Mỗi bạn nam trồng được số cây như nhau và môi bạn nữ trồng được số cây như nhau. Tính số học sinh nam và số học sinh nữ của nhóm, biết rằng mỗi bạn nam trồng được nhiều hơn mỗi bạn nữ 1 cây. [ads] + Cho tam giác ABC (AB < AC) nhọn nội tiếp đường tròn tâm O. Trên cạnh BC lần lượt lấy hai điểm D và E (D nằm giữa B và E) sao cho DAB = EAC. Các tia AD và AE tương ứng cắt lại đường trong (O) tại I và J. a) Chứng minh rằng phân giác của góc BAC đi qua điểm chính giữa của cung nhỏ IJ của đường tròn (O). b) Chứng minh rằng: Tứ giác BCJI là hình thang cân. c) Kẻ tiếp tuyến xy của đường tròn (O) tại điểm A. Chứng minh rằng đường thẳng xy cũng là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE. + Cho a, b, c là các số thực không âm thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a^2 + b^2 + c^2 – 3ab.
Đề kiểm tra giữa HK2 Toán 9 năm 2017 - 2018 phòng GD và ĐT Quận Tây Hồ - Hà Nội
Đề kiểm tra giữa HK2 Toán 9 năm 2017 – 2018 phòng GD và ĐT Quận Tây Hồ – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút, đề nhằm đánh giá chất lượng học tập môn Toán của học sinh khối 9, đồng thời giúp các em ôn luyện chuẩn bị cho kỳ thi tuyển sính vào lớp 10 môn Toán năm 2018, đề thi có lời giải chi tiết . Trích dẫn đề kiểm tra giữa HK2 Toán 9 : + Theo kế hoạch hai tổ được giao sản xuât 600 sản phẩm trong một thời gian đã định. Do cải tiến kỹ thuật nên tôt I đã sản xuất vượt mức kế hoạch 18% và tổ II sản xuất vượt mức kế hoạch 21%. Vì vậy trong cùng một thời gian quy định hai tổ đã hoàn thành vượt mức 120 sản phẩm. Tính số sản phẩm được giao của mỗi tổ theo kế hoạch. [ads] + Cho đường tròn (O;R). Từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB, AC với đường tròn (B, C là hai tiếp điểm). Từ B kẻ đường thẳng song song với AC cắt (O) tại D (D khác B), đường thẳng AD cắt (O) tại E (E khác D). a) Chứng minh tứ giác ABOC nội tiếp. b) Chứng minh: AE.AD = AB^2. c) Chứng minh góc CEA = BEC. d) Giả sử OA = 3R. Tính khoảng cách giữa hai đường thẳng AC và BD theo R.