Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề ôn tập lớp 11 môn Toán tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam

Nội dung Đề ôn tập lớp 11 môn Toán tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam Bản PDF Do ảnh hưởng của tình hình dịch bệnh vi-rút Corona (COVID-19), học sinh khối 11 trường THPT chuyên Hà Nội – Amsterdam vẫn chưa thể đi học trở lại từ sau kỳ nghỉ lễ Tết Nguyên Đán 2020, điều này ảnh hưởng lớn đến việc tiếp thu kiến thức môn Toán lớp 11. Để giúp các em có thể tự ôn tập tại nhà, tổ Toán – Tin học trường THPT chuyên Hà Nội – Amsterdam đã biên soạn bộ đề ôn tập môn Toán lớp 11 giai đoạn tháng 03 năm 2020. Đề ôn tập Toán lớp 11 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam gồm có 07 trang với 03 đề, chọn lọc các câu hỏi trắc nghiệm và tự luận từ cơ bản đến nâng cao giúp học sinh khối 11 tự ôn luyện. Trích dẫn đề ôn tập Toán lớp 11 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam : + Tìm mệnh đề sai trong các mệnh đề sau: A. Một hình bình hành có thể là hình chiếu song song của một hình thang nào đó. B. Một hình bình hành có thể xem là hình chiếu song song của một hình vuông nào đó. C. Một tam giác có thể là hình chiếu song song của tam giác đều nào đó. D. Một đoạn thẳng có thể là hình chiếu song song của tam giác nào đó. [ads] + Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi G là trọng tâm của tam giác ABC. a) Xác định giao điểm I của A’G với mặt phẳng (AB’C’)? Tính IA’:IG? b) Gọi (P) là mặt phẳng qua G và song song với mặt phẳng (AB’C’). Xác định thiết diện của hình lăng trụ bị cắt bởi mặt phẳng (P)? c) Biết tam giác AB’C’ là tam giác đều cạnh a, tính diện tích thiết diện ở trên? d) Gọi (d) và (d’) lần lượt là giao tuyến của mp (P) với mp (ABB’A’) và mp (ACC’A’). Chứng minh rằng d, d’, AA’ đồng qui. + Cho hình chóp tứ giác đều S.ABCD đỉnh S, cạnh đáy của hình chóp có độ dài bằng 2, chiều cao bằng h. Gọi C1(O; r) là hình cầu tâm O bán kính r nội tiếp hình chóp; gọi C2(K; R) là hình cầu tâm K bán kính R tiếp xúc với 8 cạnh của hình chóp. Biết rằng khoảng cách từ O đến mặt phẳng (ABCD) bằng khoảng cách từ K đến mặt phẳng (ABCD). 1. Chứng minh rằng r = (√(1 + h^2) − 1)/h. 2. Tính giá trị của h, từ đó suy ra thể tích của hình chóp.

Nguồn: sytu.vn

Đọc Sách

Đề KSCL HSG Toán 11 lần 2 năm 2023 - 2024 trường THPT Yên Lạc - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng chọn đội tuyển học sinh giỏi môn Toán 11 lần 2 năm học 2023 – 2024 trường THPT Yên Lạc, tỉnh Vĩnh Phúc (mã đề 203); đề thi kết hợp giữa trắc nghiệm chọn phương án và trắc nghiệm điền khuyết. Trích dẫn Đề KSCL HSG Toán 11 lần 2 năm 2023 – 2024 trường THPT Yên Lạc – Vĩnh Phúc : + Một vệ tinh nhân tạo bay quanh Trái Đất theo một quỹ đạo hình elip. Độ cao h (tính bằng km) của vệ tinh so với bề mặt Trái Đất được xác định bởi công thức 550 450cos 50 h t π trong đó t là thời gian tính bằng phút kể từ lúc vệ tinh bay vào quỹ đạo. Người ta cần thực hiện một thí nghiệm khoa học khi vệ tinh cách mặt đất 250km. Một thời điểm để thực hiện thí nghiệm đó là? + Một guồng nước có bán kính 2,5m, có trục quay ở cách mặt nước 2m, quay đều mỗi phút một vòng (quay theo chiều ngược kim đồng hồ, xem hình dưới đây). Gọi y (mét) là khoảng cách từ mặt nước đến một chiếc gầu của guồng nước ở thời điểm x (phút) (quy ước rằng y > 0 khi gầu ở bên trên mặt nước và y < 0 khi gầu ở dưới nước). Biết rằng sau khi khởi động 0,5 phút thì chiếc gầu đó ở đỉnh cao nhất của guồng nước. Khi đó hệ thức liên hệ giữa x và y là? + Nhà bạn An cần khoan một cái giếng nước. Biết rằng giá tiền của mét khoan đầu tiên là 200.000đ và kể từ mét khoan thứ hai, giá tiền của mỗi mét sau tăng thêm 7% so với giá tiền của mét khoan ngay trước nó. Hỏi nếu nhà bạn An khoan cái giếng sâu 30m thì hết bao nhiêu tiền (làm tròn đến hàng nghìn)?
Đề KSCL đội tuyển HSG Toán 11 năm 2023 - 2024 trường THPT Yên Lạc - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 11 năm học 2023 – 2024 trường THPT Yên Lạc, tỉnh Vĩnh Phúc; đề thi mã đề 201, gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn Đề KSCL đội tuyển HSG Toán 11 năm 2023 – 2024 trường THPT Yên Lạc – Vĩnh Phúc : + Một tấm đề can hình chữ nhật được cuộn tròn lại theo chiều dài tạo thành một khối trụ có đường kính 50 (cm). Người ta trải ra 250 vòng để cắt chữ và in tranh cổ động, phần còn lại là một khối trụ có đường kính 45 (cm). Hỏi phần đã trải ra dài bao nhiêu mét (làm tròn đến hàng đơn vị)? + Một người mua một căn hộ chung cư với giá 500 triệu đồng. Người đó trả trước số tiền là 100 triệu đồng. Còn lại người đó thanh toán theo hình thức trả góp với lãi suất tính trên tổng số tiền còn nợ là 0,5% mỗi tháng. Sau mỗi tháng kể từ ngày mua, người đó trả (cả gốc lẫn lãi) số tiền cố định là 4 triệu đồng. Thời gian để người đó trả hết nợ (làm tròn đến hàng đơn vị) là? + Kĩ sư A làm việc cho công ty X với mức lương khởi điểm là 10 triệu đồng/tháng. Sau mỗi năm, tiền lương hàng tháng tăng thêm 8% so với năm trước đó. Hỏi tổng tiền lương của kĩ sư A sau đúng 5 năm làm việc (làm tròn đến hàng nghìn đồng) là bao nhiêu?
Đề KSCL học sinh giỏi Toán 11 lần 1 năm 2022 - 2023 trường THPT Quế Võ 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng học sinh giỏi môn Toán 11 lần 1 năm học 2022 – 2023 trường THPT Quế Võ số 1, tỉnh Bắc Ninh; đề thi gồm 01 trang với 06 bài toán hình thức tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề), thí sinh không được sử dụng tài liệu, cán bộ coi thi không giải thích gì thêm. Trích dẫn Đề KSCL học sinh giỏi Toán 11 lần 1 năm 2022 – 2023 trường THPT Quế Võ 1 – Bắc Ninh : + Gọi X là tập hợp tất cả các số tự nhiên có 5 chữ số khác nhau được lập từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Chọn ngẫu nhiên từ X ra một số. Tính xác suất để chọn được số không có hai chữ số chẵn đứng liền kề. + Trong mặt phẳng Oxy cho đường tròn 13 2 2 C1 x y, đường tròn 6 25 2 2 C2 x y 1. Tìm giao điểm của hai đường tròn C1 và C2. 2. Gọi giao điểm có tung độ dương của C1 và C2 là A, viết phương trình đường thẳng đi qua A cắt C1 và C2 theo hai dây cung có độ dài bằng nhau. + Cho hình thoi ABCD tâm O có 0 B 60. Điểm S nằm ngoài mặt phẳng (ABCD) thỏa mãn SAB SAC. Cho M, N lần lượt là trung điểm của SA và CD. 1. Chứng minh rằng: MN SBC. 2. Dựng thiết diện của hình chóp S.ABCD bị cắt bởi mặt phẳng qua MN và song song với SC. Thiết diện là hình gì? 3. Tính tỉ số diện tích của thiết diện và tam giác SBC.
Đề KSCL đội tuyển HSG Toán 11 năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc
Đề KSCL đội tuyển HSG Toán 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn nhằm giúp nhà trường và giáo viên kiểm tra lại năng lực môn Toán của học sinh khối 11 nằm trong đội tuyển học sinh giỏi Toán 11 của nhà trường sau quá trình bồi dưỡng, đây là kỳ thi cần thiết, cũng như là bước chuẩn bị sau cùng cho các em trước khi tham dự kỳ thi học sinh giỏi Toán 11 tỉnh Vĩnh Phúc. Đề KSCL đội tuyển HSG Toán 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn theo hình thức tự luận với 08 bài toán, bao quát toàn diện các kiến thức Toán 11 mà các em đã được ôn tập trước đó, thời gian làm bài thi môn Toán là 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề KSCL đội tuyển HSG Toán 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Cho các chữ số 0; 1; 2; 3; 4; 5; 6; 7. Từ 8 chữ số trên lập được bao nhiêu số tự nhiên có 8 chữ số đôi một khác nhau sao cho tổng 4 chữ số đầu bằng tổng 4 chữ số cuối. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thang có AD = 2a, AB = BC = CD = a, góc BAD = 60 độ, SA vuông góc với đáy và SA = a√3. M và I là hai điểm thỏa mãn 3MI + MS = 0, 4IS + 3ID = 0. Mặt phẳng (AMI) cắt SC tại N. a) Chứng minh đường thẳng SD vuông góc với mặt phẳng (AMI). b) Chứng minh góc ANI = 90 độ, góc AMI = 90 độ. c) Tính diện tích của thiết diện tạo bởi mặt phẳng (AMI) và hình chóp S.ABCD. + Cho tam giác ABC có BC = a, AB = c, AC = b. Biết góc BAC = 90 độ và a, b√2/3, c theo thứ tự tạo thành cấp số nhân. Tính số đo góc B, C.