Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào năm 2022 trường THPT chuyên KHTN Hà Nội

Nội dung Đề tuyển sinh vào năm 2022 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh vào năm 2022 trường THPT chuyên KHTN Hà Nội Đề tuyển sinh vào năm 2022 trường THPT chuyên KHTN Hà Nội Sytu trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 năm 2022 của trường THPT chuyên Khoa học Tự nhiên, Đại học Quốc gia Hà Nội. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022 và đề thi bao gồm đề Toán điều kiện, đề Toán chung và đề Toán vòng 1 Đề thi được biên soạn bởi CLB Toán Lim, gồm các thầy cô: Nguyễn Duy Khương, Nguyễn Hoàng Việt, Trịnh Đình Triển, Khôi Hà, Nguyễn Văn Hoàng và Nguyễn Khang. Đề thi có đáp án và lời giải chi tiết để thí sinh tham khảo. Dưới đây là một số câu hỏi trích dẫn từ đề tuyển sinh: Trên bàn có 8 hộp rỗng, mỗi lần thêm bi vào các hộp theo quy tắc nhất định. Hỏi số lần thêm bi ít nhất để nhận được số bi ở 8 hộp đều là 8 số tự nhiên liên tiếp? Cho hình chữ nhật ABCD nội tiếp trong đường tròn (O). Chứng minh rằng BE cắt CF tại một điểm trên đường tròn (O), và điểm D, M, N thẳng hàng. Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức: 25y^2 + 354x + 60 = 36x^2 + 305y + (5y − 6x)^2022. Hãy chuẩn bị kỹ lưỡng và tự tin để đối phó với những thách thức trên kỳ thi tuyển sinh sắp tới! Chúc các em học sinh thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Hà Giang
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Hà Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán (chuyên) năm 2022-2023 sở GDĐT Hà Giang Đề thi tuyển sinh chuyên môn Toán (chuyên) năm 2022-2023 sở GDĐT Hà Giang Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên) năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Hà Giang. Kỳ thi sẽ diễn ra vào ngày 15 tháng 06 năm 2022. Dưới đây là một số câu hỏi trích dẫn từ đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022-2023 của sở GDĐT Hà Giang: Tìm giá trị của m để phương trình x^2 + 2mx - 2m - 6 = 0 (với m là tham số) có hai nghiệm x1, x2 sao cho x1^2 + x2^2 đạt giá trị nhỏ nhất. Tìm nghiệm nguyên của phương trình (2x + y)(x - y) + x + 8y = 22. Cho đường tròn (O) có đường kính BC và H là một điểm nằm trên đoạn thẳng BO. Vẽ đường thẳng vuông góc với BC qua H, cắt đường tròn (O) tại A và D. Gọi M là giao điểm của AC và BD, qua M vẽ đường thẳng vuông góc với BC tại N. a) Chứng minh rằng tứ giác MNBA là tứ giác nội tiếp. b) Chứng minh rằng 2BH·BO = AB^2, tính giá trị của P. c) Vẽ tiếp tuyến từ B đến đường tròn (O), cắt AC và AN lần lượt tại K và E. Chứng minh rằng đường thẳng EC đi qua trung điểm I của đoạn thẳng AH khi H di động trên BO. Mong rằng với đề thi này, các em học sinh sẽ có cơ hội thể hiện kiến thức và khả năng giải quyết vấn đề của mình. Chúc các em học tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Cao Bằng
Nội dung Đề tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Cao Bằng Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên môn Toán năm 2022 - 2023 sở GD ĐT Cao Bằng Đề thi tuyển sinh THPT chuyên môn Toán năm 2022 - 2023 sở GD ĐT Cao Bằng Sytu xin gửi đến các thầy cô và các em học sinh lớp 9 đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Cao Bằng. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không tính thời gian giao đề). Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 - 2023 sở GD&ĐT Cao Bằng: Cho Parabol (P): y = mx^2 và đường thẳng (d): y = 2x - m^2 (với m > 0). Hãy tìm giá trị của m để (d) cắt (P) tại hai điểm A và B, và chứng minh rằng A và B nằm bên phải trục tung. Cho nửa đường tròn (O;R) có đường kính AB. Đường thẳng d tiếp xúc (O) tại B. Trên cung AB, chọn điểm M (M khác A và B). Tia AM cắt d tại C. I là trung điểm của AM, IO cắt d tại N. Hãy chứng minh rằng OBCI nội tiếp, AI.IC = IO.IN và E là hình chiếu của O trên AN. Cần chứng minh điều gì? Cho hệ phương trình với tham số m. Tìm giá trị nguyên của m để hệ phương trình có một nghiệm duy nhất (x;y) sao cho A = 3x - y là số nguyên. Nội dung đề thi truyền đạt thông điệp về tính logic, tư duy và khả năng giải quyet vấn đề của các thí sinh. Hãy chuẩn bị kỹ lưỡng và tự tin cho kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên Toán) năm 2022 2023 sở GD ĐT Tiền Giang
Nội dung Đề tuyển sinh môn Toán (chuyên Toán) năm 2022 2023 sở GD ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên Toán) năm 2022-2023 sở GD ĐT Tiền Giang Đề tuyển sinh môn Toán (chuyên Toán) năm 2022-2023 sở GD ĐT Tiền Giang Chào đón quý thầy cô và các em học sinh lớp 9, mùa tuyển sinh năm nay đã đến. Để giúp các em chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông chuyên Toán, chúng tôi xin giới thiệu đề thi chính thức môn Toán của sở Giáo dục và Đào tạo tỉnh Tiền Giang. Đề thi sẽ diễn ra vào ngày 18 tháng 06 năm 2022, và dưới đây là một số câu hỏi mẫu từ đề tuyển sinh: Phương trình của parabol (P) đi qua điểm M(3;3) và cắt đường thẳng (d): y = -1/2.x + m tại hai điểm A và B. Tìm phương trình của parabol (P) và giá trị của tham số m để điều này xảy ra. Chứng minh rằng nếu x1, x2, x3, x4 là nghiệm của hệ thức x2 + mx + 1 = 0 và x2 + nx + 1 = 0, thì áp dụng một quy tắc nhất định. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức S = x – y + 2 trong khi x và y thỏa mãn một đẳng thức cụ thể. Chứng minh các tính chất trong tam giác ABC nội tiếp đường tròn tâm O và chứng minh các quan hệ HE/HF = NB/NC, HE.MQ.HB = HF.MP.NC Hy vọng rằng đề thi này sẽ giúp các em tự tin và hiểu biết rõ hơn về kiến thức Toán cũng như chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em học tốt và đạt kết quả cao trong kỳ thi tuyển sinh!
Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau Sytu xin chào đến quý thầy, cô giáo và các em học sinh lớp 9 với đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Cà Mau, được tổ chức vào ngày 22 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Cà Mau: - Cho Parabol (P): y = 3/2.x^2 và đường thẳng (d): y = 2mx + 1. a) Chứng minh rằng đường thẳng (d) luôn cắt Parabol (P) tại hai điểm phân biệt. b) Khi m = 1/4, vẽ Parabol (P) và đường thẳng (d) trên mặt phẳng Oxy và tìm tọa độ giao điểm của chúng. - Một xí nghiệp chế biến thủy sản dự kiến đóng 3,000 hộp tôm xuất khẩu trong một thời gian nhất định. Trong 6 ngày đầu, họ thực hiện đúng tiến độ, sau đó mỗi ngày đóng vượt 10 hộp tôm xuất khẩu, khiến họ hoàn thành sớm 1 ngày và vượt mức 60 hộp tôm xuất khẩu nữa. Hỏi theo dự kiến, mỗi ngày xí nghiệp đóng bao nhiêu hộp tôm xuất khẩu? - Cho số M (trong đó dấu căn bậc ba được viết lặp lại 2022 lần). Chứng minh rằng 2022 < M < 2023.