Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giao lưu HSG Toán năm 2018 2019 cụm Gia Bình Lương Tài Bắc Ninh

Nội dung Đề thi giao lưu HSG Toán năm 2018 2019 cụm Gia Bình Lương Tài Bắc Ninh Bản PDF Đề thi giao lưu HSG Toán năm 2018 – 2019 cụm Gia Bình – Lương Tài – Bắc Ninh mã đề 888 gồm 6 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, thời gian làm bài thi 90 phút, kỳ thi được diễn ra vào ngày 23 tháng 12 năm 2018 nhằm đánh giá chất lượng đội tuyển học sinh giỏi Toán của các trường, đồng thời tạo điều kiện để các em rèn luyện và phát triển năng lực môn Toán của bản thân, đề thi có đáp án mã đề 666 và 888. Trích dẫn đề thi giao lưu HSG Toán năm 2018 – 2019 cụm Gia Bình – Lương Tài – Bắc Ninh : + Một phân xưởng có hai máy đặc chủng M1, M2 sản xuất hai loại sản phẩm kí hiệu I, II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại II lãi 1,6 triệu đồng. Muốn sản xuất một tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể dùng để sản xuất đồng thời hai sản phẩm trên. Máy M1 làm việc không quá 6 giờ trong một ngày, máy M2 một ngày chỉ làm việc không quá 4 giờ. Tổng số tiền lãi là lớn nhất có thể đạt được là? + Nhà xe khoán cho hai tài xế ta-xi Nam và Tiến mỗi người lần lượt nhận 32 lít và 72 lít xăng. Hỏi tổng số ngày ít nhất là bao nhiêu để hai tài xế chạy tiêu thụ hết số xăng của mình được khoán, biết rằng chỉ tiêu cho hai người một ngày tổng cộng chỉ chạy đủ hết 10 lít xăng và mỗi ngày lượng xăng của mỗi người chạy là không thay đổi? [ads] + Một người thợ muốn tạo một đồ vật hình trụ từ một khối gỗ hình hộp chữ nhật, có đáy là hình vuông và chiều cao bằng 1,25 m. Để tạo ra đồ vật đó người thợ vẽ hai đường tròn (C) và (C’) nội tiếp hai hình vuông của hai mặt đáy của khối gỗ hình hộp chữ nhật rồi dọc đi phần gỗ thừa theo các đường sinh của đồ vật hình trụ. Biết rằng, trong tam giác cong tạo bởi đường tròn (C) và hình vuông ngoại tiếp của (C) có một hình chữ nhật kích thước 0,3cm x 0,6cm (như hình vẽ) và mỗi mét khối gỗ thành phẩm có giá 20 triệu đồng. Hỏi người thợ cần số tiền gần nhất với số tiền của phương án nào dưới đây để tạo được 10 đồ vật như vậy. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán 12 năm 2019 - 2020 sở GDĐT Quảng Ngãi
Thứ Sáu ngày 06 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Quảng Ngãi tổ chức kỳ thi tuyển chọn học sinh giỏi môn Toán lớp 12 cấp tỉnh năm học 2019 – 2020. Đề thi học sinh giỏi tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Quảng Ngãi gồm có 02 trang với 05 bài toán, thời gian học sinh làm bài là 180 phút, đề thi được biên soạn theo dạng đề tự luận, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Quảng Ngãi : + Cho hình chóp S.ABC có hai mặt phẳng (SAB), (SAC) cùng vuông góc với mặt phẳng (ABC), tam giác ABC vuông cân tại B, SB = a, góc giữa hai mặt phẳng (SBC) và (ABC) bằng α. a) Tính theo a và α thể tích khối chóp G.ANC với G là trọng tâm tam giác SBC, N là trung điểm BC. b) Gọi M là trung điểm AC. Tìm giá trị của α để khoảng cách giữa hai đường thẳng MN, SC đạt giá trị lớn nhất. [ads] + Gọi S là tập hợp tất cả các số tự nhiên gồm bốn chữ số đôi một khác nhau được lập từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn chia hết cho 15. + Anh Giàu hàng tháng gửi vào ngân hàng 5 triệu đồng theo thể thức lãi kép, kì hạn 1 tháng với lãi suất 0,65% / tháng. Tính tổng số tiền anh Giàu nhận được khi gửi được 20 tháng.
Đề thi chọn HSG cấp tỉnh Toán 12 THPT năm 2019 sở GDĐT Quảng Ninh
Sáng thứ Ba ngày 03/09/2019, sở Giáo dục và Đào tạo tỉnh Quảng Ninh tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 12 khối THPT năm học 2019 – 2020. Đề thi chọn HSG cấp tỉnh Toán 12 THPT năm 2019 sở GD&ĐT Quảng Ninh gồm có 01 trang với 06 bài toán, học sinh làm bài trong 180 phút. Trích dẫn đề thi chọn HSG cấp tỉnh Toán 12 THPT năm 2019 sở GD&ĐT Quảng Ninh : + Cho hàm số y = (2x – 1)/(x – 1) có đồ thị (C). Gọi M là điểm bất kì trên (C). Tiếp tuyến của (C) tại M cắt hai đường tiệm cận của (C) tại A và B. Gọi I là giao điểm của hai đường tiệm cận. Tìm trên (C) tất cả các điểm M sao cho chu vi tam giác IAB nhỏ nhất. + Cho a = log_2 3, b = log_3 5, c = log_7 2. Tính log_280 441 theo a, b, c. + Có hai nhà kho, nhà kho thứ nhất có 8 cái điều hòa tốt và 4 cái điều hòa hỏng. Nhà kho thứ hai có 9 cái điều hòa tốt và 6 cái điều hòa hỏng (giả thiết các điều hòa ở hai nhà kho, mỗi cái được đựng trong hộp kín, nhìn bề ngoài không phân biệt được). Hùng vào mỗi nhà kho lấy ngẫu nhiên 2 cái điều hòa. Tính xác suất để 4 cái điều hòa Hùng lấy được có ít nhất 2 cái điều hòa tốt. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có 3 góc đều nhọn và nội tiếp trong đường tròn tâm I. Gọi K là hình chiếu vuông góc của B trên đường thẳng AC, H là hình chiếu vuông góc của C trên đường thẳng BI. Đường thẳng AC và KH lần lượt có phương trình là x + y + 1 = 0 và x + 2y – 1 = 0. Biết điểm B thuộc đường thẳng y – 5 = 0, điểm I thuộc đường thẳng x + 1 = 0. Tìm tọa độ điểm C. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, tâm O. Biết SO vuông góc với mặt phẳng (ABCD), SB = 3a và góc BAD = 120 độ. Gọi M, N lần lượt là các điểm thuộc các cạnh BC và SA sao cho BM = 2/3.BC, SN = 1/3.SA. a. Tính thể tích khối chóp S.MND theo a. b. Gọi α là góc giữa đường thẳng MN và mặt phẳng (SBD). Tính cosα.
Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2019 - 2020 sở GDĐT Hà Tĩnh
Sáng thứ Ba ngày 03 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Hà Tĩnh tổ chức kỳ thi chọn HSG tỉnh lớp 12 THPT môn Toán năm học 2019 – 2020. Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Hà Tĩnh gồm có 01 trang với 09 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Hà Tĩnh : + Cho hàm số y = x^4/2 – 3x^2 + 3/2 (C). Tìm tọa độ tất cả các điểm M thuộc đồ thị (C) sao cho tiếp tuyến của (C) tại M cắt đồ thị (C) tại hai điểm phân biệt P, Q khác M thỏa mãn MP = 3MQ với Q nằm giữa M và P. + Gọi S là tập nghiệm của phương trình (x – 2log_2 x)√(9^x – (m – 1)3^x – m) = 0 (với m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của tham số m để tập hợp S có hai phần tử. [ads] + Cho hình chóp tứ giác S.ABCD có SA = x và các cạnh còn lại bằng 1. Tính thể tích khối chóp S.ABCD theo x và tìm x để thể tích đó lớn nhất. + Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn chia hết cho 15. + Cho tứ diện ABCD có AB = CD = √5, AC = BD = √10, AD = BC = √13. Tính khoảng cách từ điểm A đến mặt phẳng (BCD).
Đề thi chọn HSG Toán 12 THPT năm học 2019 - 2020 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi chọn HSG Toán 12 THPT năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc, đề thi gồm có 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi chọn HSG Toán 12 THPT năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc : + Trong mặt phẳng với hệ trục toạ độ Oxy, cho tam giác ABC vuông tại A. Điểm D là chân đường phân giác trong góc A. Gọi M, N lần lượt là hình chiếu vuông góc của D trên AB, AC. Đường tròn (x + 2)^2 + (y – 1)^2 = 9 ngoại tiếp tam giác DMN. Gọi H là giao điểm của BN và CM, đường thẳng AH có phương trình 3x + y – 10 = 0. Tìm tọa độ điểm B biết M có hoành độ dương, A có hoành độ nguyên. + Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, AA’ = a. Hình chiếu vuông góc của A’ trên mặt phẳng (ABC) trùng với trung điểm cạnh AB. Gọi I là trung điểm của A’C, điểm S thỏa mãn IB = 2SI. Tính theo a thể tích khối chóp S.AA’B’B. [ads] + Một hộp có 50 quả cầu được đánh số từ 1 đến 50. Lấy ngẫu nhiên 3 quả cầu từ hộp đó. Tính xác suất để tích 3 số ghi trên 3 quả cầu lấy được là một số chia hết cho 8. + Cho hàm số y = x^3 – 3x^2 – mx + 2  có đồ thị là (Cm). Tìm tất cả các giá trị thực của tham số m để (Cm) có điểm cực đại và điểm cực tiểu cách đều đường thẳng y = x – 1. + Cho tứ diện ABCD có G là trọng tâm tam giác BCD. Mặt phẳng (P) đi qua trung điểm I của AG và cắt các đoạn AB, AC, AD tại các điểm khác A. Gọi hA, hB, hC, hD lần lượt là khoảng cách từ các điểm A, B, C, D đến mặt phẳng (P). Chứng minh rằng: (hB^2 + hC^2 + hD^2)/3 ≥ hA^2.