Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Bình Dương

Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Bình Dương Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Bình Dương: Làm quen với các câu hỏi và bài tập trong đề thi Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Bình Dương: Làm quen với các câu hỏi và bài tập trong đề thi Ngày 03 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Bình Dương đã tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán cho năm học 2021 – 2022. Đề thi tuyển sinh lớp 10 môn Toán của sở GD&ĐT Bình Dương bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút và đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Bình Dương: + Bài toán 1: Giải hệ phương trình: 3x + 2y = 10, 2x - y = m (với m là tham số). Yêu cầu: Tìm nghiệm của hệ phương trình khi m = 9 và tìm tất cả các giá trị của m để hệ phương trình có nghiệm. + Bài toán 2: Vẽ đồ thị của Parabol y = x^2 và đường thẳng y = 5x + 6. Yêu cầu: Tìm tọa độ các giao điểm của Parabol và đường thẳng bằng phép tính, sau đó viết phương trình của đường thẳng song song và cắt Parabol tại hai điểm phân biệt có hoành độ lần lượt là x_1 và x_2 sao cho x_1 + x_2 = 24. + Bài toán 3: Một khu vườn hình chữ nhật có chiều dài gấp 3 lần chiều rộng. Người ta làm một lối đi xung quanh vườn rộng 1,5m. Tính kích thước của vườn, biết rằng diện tích đất còn lại trong vườn để trồng cây là 24329 m2. Đề thi tuyển sinh môn Toán năm 2021 – 2022 sở GD&ĐT Bình Dương không chỉ giúp học sinh làm quen với cấu trúc và loại câu hỏi trong đề thi mà còn giúp họ rèn luyện kỹ năng giải quyết vấn đề và suy luận logic. Chúc các em học sinh đạt kết quả tốt trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào THPT lần 1 năm 2024 - 2025 phòng GDĐT Vụ Bản - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Vụ Bản, tỉnh Nam Định; đề thi gồm 02 trang, cấu trúc 20% trắc nghiệm + 80% tự luận, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào THPT lần 1 năm 2024 – 2025 phòng GD&ĐT Vụ Bản – Nam Định : + Ngày 04 06 1783 anh em nhà Mông–gôn–fi-ê (Montgolfier) người Pháp phát minh ra khinh khí cầu dùng không khí nóng. Coi khinh khí cầu này là hình cầu đường kính 11 m. Diện tích mặt khinh khí cầu đó bằng? + Cho hình vuông ABCD có chu vi là 40 cm. Vẽ cung tròn (B BA) cắt đường chéo BD tại M cung tròn (D DM) cắt các cạnh DA DC lần lượt tại E F (hình vẽ bên). Tính diện tích phần hình vuông ABCD ở ngoài hai cung tròn (phần tô đậm trong hình, kết quả làm tròn đến chữ số thập phân thứ hai). + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn tâm O có 2 đường cao BE, CF (E AC F AB) cắt nhau tại H. Tia AO cắt BC tại M và cắt (O) tại N. a) Chứng minh tứ giác BF CE nội tiếp và A F ANC E b) Gọi P Q lần lượt là hình chiếu của M trên AB, AC. Chứng minh HF NCB E và HE MQ HB HF MP NC.
Đề thi thử Toán tuyển sinh lớp 10 năm 2024 - 2025 phòng GDĐT TP Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND thành phố Nam Định, tỉnh Nam Định; đề thi hình thức 20% trắc nghiệm khách quan + 80% tự luận, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán tuyển sinh lớp 10 năm 2024 – 2025 phòng GD&ĐT TP Nam Định : + Cho tam giác ABC vuông tại A. Biết 0 AC cm ACB 3 30. Vẽ đường tròn tâm B bán kính BA cắt cạnh BC tại D. Tính diện tích phần mặt phẳng tô đậm ở hình vẽ bên. (Kết quả làm tròn đến chữ số thập phân thứ hai). + Cho tam giác ABC nhọn AB AC. Đường tròn O R đường kính BC cắt các cạnh AB AC; lần lượt tại E D. Các đường thẳng BD và CE cắt nhau tại I. Đường thẳng AI cắt BC tại H. a) Chứng minh tứ giác BHIE và CDIH là các tứ giác nội tiếp. b) Đường thẳng DH cắt đường thẳng CE tại M và cắt đường tròn O R tại điểm thứ hai là N (N khác D). Chứng minh NE AI và IE CM IM CE. + Một hình chữ nhật có chiều dài gấp đôi chiều rộng. Nếu giảm chiều dài 5m và tăng chiều rộng 5m thì được một hình vuông. Chu vi của hình chữ nhật ban đầu là?