Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán về tam giác đặc sắc

Nội dung Các bài toán về tam giác đặc sắc Bản PDF - Nội dung bài viết Bài toán về tam giác đặc sắc Bài toán về tam giác đặc sắc Sản phẩm tài liệu này bao gồm 90 trang, tập hợp các bài toán về tam giác đặc sắc thú vị và phức tạp, cung cấp đáp án và lời giải chi tiết. Được thiết kế để giúp học sinh tham khảo trong quá trình ôn tập dự thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. Bên dưới là một số nội dung chính trong tài liệu: Hệ thống kiến thức cơ bản về tam giác: Bao gồm các kiến thức về tổng ba góc trong tam giác, quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác, tam giác đồng dạng, hệ thức lượng trong tam giác. Một số kiến thức nâng cao thường áp dụng: Bao gồm các công thức về đường cao, đường trung tuyến, đường phân giác trong tam giác, các công thức về lượng giác trong tam giác, các định lí hình học nổi tiếng trong tam giác. Các thí dụ minh họa Bài tập tự luyện Hướng dẫn giải Tài liệu này sẽ giúp học sinh rèn luyện kỹ năng giải các bài toán về tam giác đặc sắc, từ những nội dung cơ bản đến những kiến thức nâng cao. Chắc chắn rằng người đọc sẽ có cơ hội hiểu sâu hơn về chủ đề này và chuẩn bị tốt cho các kì thi quan trọng.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề hàm số và đồ thị ôn thi vào lớp 10 môn Toán - Nguyễn Đăng Tuấn
Tài liệu gồm 52 trang, được biên soạn bởi thầy giáo ThS. Nguyễn Đăng Tuấn, tuyển tập 105 bài tập chuyên đề hàm số và đồ thị ôn thi vào lớp 10 môn Toán, có đáp án và lời giải chi tiết. Trích dẫn chuyên đề hàm số và đồ thị ôn thi vào lớp 10 môn Toán – Nguyễn Đăng Tuấn: + Cho hàm số y m x m 2 1 4 (m là tham số) có đồ thị là đường thẳng (d). a) Tìm m để (d) đi qua điểm A(-1;2). b) Tìm m để (d) song song với đường thẳng (Δ) có phương trình: y x 5 1. c) Chứng minh rằng khi m thay đổi thì đường thẳng (d) luôn đi qua một điểm cố định. + Cho hàm số 2 y x có đồ thị là P và hàm số y x 2 có đồ thị là d. a) Vẽ P và d trên cùng một mặt phẳng tọa độ Oxy. b) Bằng phép tính, tìm tọa độ các giao điểm A B của P và d (hoành độ của A nhỏ hơn hoành độ của B). Gọi C và D lần lượt là hình chiếu vuông góc của A và B trên trục hoành, tính diện tích của tứ giác ABDC. + Cho hàm số 2 y ax có đồ thị P và đường thẳng d y mx m 3. a) Tìm a để đồ thị P đi qua điểm B(2;-2). b) Chứng minh rằng đường thẳng d luôn cắt đồ thị P tại hai điểm phân biệt C và D với mọi giá trị của m. c) Gọi Cx và Dx lần lượt là hoành độ của hai điểm C và D. Tìm các giá trị của m sao cho 2 2 2 20 0.
Các dạng toán và phương pháp giải hệ phương trình đại số - Nguyễn Quốc Bảo
Tài liệu gồm 203 trang, được tổng hợp bởi thầy giáo Nguyễn Quốc Bảo, tuyển tập các dạng toán và hướng dẫn phương pháp giải hệ phương trình đại số, tài liệu phù hợp với mục đích bồi dưỡng học sinh giỏi môn Toán lớp 8 – 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. Mục lục tài liệu các dạng toán và phương pháp giải hệ phương trình đại số – Nguyễn Quốc Bảo: Phần I . MỘT SỐ DẠNG HỆ PHƯƠNG TRÌNH THƯỜNG GẶP. 1. Hệ phương trình bậc nhất hai ẩn. 2. Hệ gồm một phương trình bậc hai và một phương trình bậc nhất hai ẩn. 3. Hệ đối xứng loại I. 4. Hệ đối xứng loại II. 5. Hệ phương trình có yếu tố đẳng cấp. 6. Hệ chứa trị tuyệt đối. 7. Hệ phương trình bậc cao. 8. Hệ phương trình chứa căn thức. 9. Hệ phương trình mũ. 10. Hệ phương trình ba ẩn. Phần II . CÁC KĨ THUẬT GIẢI HỆ PHƯƠNG TRÌNH. 1. Kĩ thuật thế trong giải hệ phương trình. 2. Kĩ thuật phân tích thành nhân tử. 3. Kĩ thuật nhân, chia, cộng, trừ hai vế của hệ phương trình. 4. Kĩ thuật đặt ẩn phụ. 5. Kĩ thuật nhân liên hợp đối với hệ chứa căn. 6. Kĩ thuật đánh giá trong giải hệ phương trình. 7. Kĩ thuật hệ số bất định trong giải hệ phương trình. BÀI TẬP RÈN LUYỆN TỔNG HỢP HƯỚNG DẪN GIẢI – ĐÁP SỐ Mỗi chủ đề gồm ba phần: A. Kiến thức cần nhớ: Tóm tắt những kiến thức cơ bản, những kiến thức bổ sung cần thiết để làm cơ sở giải các bài tập thuộc các dạng của chuyên đề. B. Ví dụ minh họa: Đưa ra những ví dụ chọn lọc, tiêu biểu chứa đựng những kĩ năng và phương pháp luận mà chương trình đòi hỏi. Mỗi ví dụ thường có: Lời giải kèm theo những nhận xét, lưu ý, bình luận và phương pháp giải, về những sai lầm thường mắc nhằm giúp học sinh tích lũy thêm kinh nghiệm giải toán, học toán. C. Bài tập vận dụng: Hệ thống các bài tập được phân loại theo các dạng toán, tăng dần độ khó cho học sinh khá giỏi, có hướng dẫn hoặc lời giải.
Tài liệu ôn thi tuyển sinh vào lớp 10 môn Toán - Lư Sĩ Pháp
Tài liệu gồm 63 trang, được biên soạn bởi thầy giáo Lư Sĩ Pháp, tóm tắt lý thuyết và tuyển chọn các dạng bài tập giúp học sinh ôn thi tuyển sinh vào lớp 10 môn Toán. Vấn đề 1. Rút gọn và chứng minh biểu thức. Vấn đề 2. Phương trình. Vấn đề 3. Hệ phương trình. Vấn đề 4. Ứng dụng định lí Vi-ét. Vấn đề 5. Đường thẳng. Vấn đề 6. Parabol. Vấn đề 7. Giải toán bằng cách lập phương trình hoặc hệ phương trình. Vấn đề 8. Hình học. Vấn đề 9. Một số đề tham khảo tuyển sinh vào lớp 10 môn Toán.
Tài liệu luyện thi vào lớp 10 môn Toán phần Hình học - Vũ Xuân Hưng
Tài liệu gồm 122 trang, được biên soạn bởi thầy giáo Vũ Xuân Hưng, tổng hợp kiến thức cần nhớ, các dạng bài tập và hướng dẫn giải, tuyển chọn các bài tập từ cơ bản đến nâng cao các chủ đề Hình học bậc THCS, giúp học sinh ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHUYÊN ĐỀ 7 – HÌNH HỌC PHẲNG. A. KIẾN THỨC CẦN NHỚ 1. Hệ thức lượng trong tam giác vuông. 2. Các tỉ số lượng giác của góc nhọn trong tam giác vuông. 3. Góc và đường tròn. B. CÁC DẠNG BÀI TẬP CƠ BẢN Dạng toán 1. Chứng minh tứ giác nội tiếp đường tròn. Dạng toán 2. Chứng minh tứ giác đã cho là hình bình hành, hình thoi, hình chữ nhật, hình vuông. Dạng toán 3. Chứng minh đường thẳng là tiếp tuyến của đường tròn. Dạng toán 4. Chứng minh ba điểm thẳng hàng. Dạng toán 5. Chứng minh tỉ lệ độ dài đoạn thẳng. Dạng toán 6. Chứng minh đường thẳng là tiếp tuyến của đường tròn. TUYỂN TẬP ĐỀ THI TUYỂN SINH VÀO LỚP 10 MÔN TOÁN. Xem thêm : Tài liệu luyện thi vào lớp 10 môn Toán phần Đại số – Vũ Xuân Hưng