Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2019 2020 sở GD ĐT Quảng Nam

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2019 2020 sở GD ĐT Quảng Nam Bản PDF Thứ Hai ngày 06 tháng 01 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kiểm tra chất lượng học kỳ 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi HK1 Toán lớp 11 năm học 2019 – 2020 sở GD&ĐT Quảng Nam mã đề 101 gồm có 02 trang với 15 câu trắc nghiệm và 03 câu tự luận, thời gian học sinh làm bài là 60 phút, đề thi có đáp án và lời giải chi tiết các mã đề 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124. Trích dẫn đề thi HK1 Toán lớp 11 năm học 2019 – 2020 sở GD&ĐT Quảng Nam : + Trong không gian cho đường thẳng a và mặt phẳng (α) song song với nhau. Phát biểu nào sau đây sai? A. Có duy nhất một mặt phẳng chứa đường thẳng a và song song với (α). B. Trong mặt phẳng (α) có duy nhất một đường thẳng song song với đường thẳng a. C. Nếu một mặt phẳng (β) chứa đường thẳng a và cắt (α) theo giao tuyến b thì b song song với a. D. Trong mặt phẳng (α) có vô số đường thẳng chéo nhau với đường thẳng a. + Một công ty nhận được 50 hồ sơ xin việc của 50 người khác nhau muốn xin việc vào công ty, trong đó có 20 người biết tiếng Anh, 17 người biết tiếng Pháp và 18 người không biết cả tiếng Anh và tiếng Pháp. Công ty cần tuyển 5 người biết ít nhất một thứ tiếng Anh hoặc Pháp. Tính xác suất để trong 5 người được chọn có 3 người biết cả tiếng Anh và tiếng Pháp? [ads] + Cho hình chóp S.ABCD có đáy là hình bình hành, G là trọng tâm tam giác SAD, M là trung điểm của AB. a) Chứng minh AD // (SBC). b) Tìm giao tuyến của hai mặt phẳng (SGM) và (SAC). c) Gọi (α) là mặt phẳng chứa GM và song song với AC, (α) cắt SD tại E. Tính tỉ số SE/SD. + Một thầy giáo có 20 quyển sách khác nhau gồm 7 quyển sách Toán, 5 quyển sách Lí và 8 quyển sách Hóa. Thầy chọn ra 9 quyển sách để tặng cho học sinh. Hỏi thầy giáo đó có bao nhiêu cách chọn sao cho số sách còn lại của thầy có đủ 3 môn? + Một hộp đựng 5 quả cầu đỏ và 8 quả cầu vàng (các quả cầu có bán kính khác nhau). Hỏi có bao nhiêu cách chọn ra 3 quả cầu cùng màu từ hộp trên? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 11 năm 2020 - 2021 trường Phổ thông Năng khiếu - TP HCM
Đề thi HK1 Toán 11 năm 2020 – 2021 trường Phổ thông Năng khiếu, thành phố Hồ Chí Minh được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán 11 năm 2020 – 2021 trường Phổ thông Năng khiếu – TP HCM : + Chứng minh rằng với mọi m > 0, phương trình x3 – x2 – m = 0 luôn có đúng một nghiệm thực. + Trong hộp đựng 9 quả cầu có đánh số từ 1 tới 9. Lấy ngẫu nhiên ra 5 quả cầu. Tính xác suất để tích 5 số trên 5 quả cầu lấy ra là một số chia hết cho 3. + Cho hình chóp S.ABCD có đáy là hình thang với đáy lớn AD. Gọi M là trung điểm của SA, N là điểm trên cạnh SC sao cho NS = 4NC. a) Xác định giao tuyến của hai mặt phẳng (DMN) và (ABCD). b) Xác định giao điểm của MN với (SBD). c) Xác định giao tuyến của hai mặt phẳng (ABS) và (CDM). d) P là điểm trên cạnh AB sao cho PA = 3PB. Xác định thiết diện hình chóp cắt bởi mặt phẳng (MNP).
Đề thi HK1 Toán 11 năm 2020 - 2021 trường THPT Phan Chu Trinh - Đắk Lắk
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HK1 Toán 11 năm học 2020 – 2021 trường THPT Phan Chu Trinh – Đắk Lắk; đề được biên soạn theo hình thức đề trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 25 câu, chiếm 05 điểm, phần tự luận gồm 04 câu, chiếm 05 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 143, 295, 387, 415. Trích dẫn đề thi HK1 Toán 11 năm 2020 – 2021 trường THPT Phan Chu Trinh – Đắk Lắk : + Trên mặt phẳng, cho hình vuông có cạnh bằng 2. Chọn ngẫu nhiên một điểm thuộc hình vuông đã cho (kể cả các điểm nằm trên cạnh của hình vuông). Gọi P là xác suất để điểm được chọn thuộc vào hình tròn nội tiếp hình vuông đã cho (kể cả các điểm nằm trên đường tròn nội tiếp hình vuông), giá trị gần nhất của P là? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. O là giao điểm của AC và BD, M là trung điểm SB. a) Xác định giao tuyến của hai mặt phẳng (SBC) và (ABCD). b) Chứng minh OM // (SAD). c) Xác định giao điểm của MD và mặt phẳng (SAC). d) Một mặt phẳng (P) cắt các cạnh SA, SB, SC, SD lần lượt tại A’, B’, C’, D’. Chứng minh: SA/SA’ + SC/SC’ = SB/SB’ + SD/SD’. + Trong không gian cho bốn điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
Đề thi học kỳ 1 Toán 11 năm học 2020 - 2021 sở GDĐT Nam Định
Thứ Hai ngày 21 tháng 12 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi khảo sát chất lượng học kỳ 1 môn Toán lớp 11 THPT năm học 2020 – 2021. Đề thi học kỳ 1 Toán 11 năm học 2020 – 2021 sở GD&ĐT Nam Định được biên soạn theo dạng đề thi trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 04 điểm, phần tự luận gồm 05 câu, chiếm 06 điểm, thời gian làm bài 90 phút (không tính thời gian phát đề). Trích dẫn đề thi học kỳ 1 Toán 11 năm học 2020 – 2021 sở GD&ĐT Nam Định : + Trong các mệnh đề sau, mệnh đề nào đúng? A. Nếu mặt phẳng (P) song song với mặt phẳng (Q) thì mọi đường thẳng nằm trong (P) đều song song với mọi đường thẳng nằm trong (Q). B. Nếu mặt phẳng (P) song song với mặt phẳng (Q) và đường thẳng a song song với mặt phẳng (Q) thì đường thẳng a song song với mặt phẳng (P). C. Nếu mặt phẳng (P) song song với mặt phẳng (Q) thì (P) song song với mọi đường thẳng nằm trong (Q). D. Nếu mặt phẳng (P) và mặt phẳng (Q) cùng song song với mặt phẳng (R) thì mặt phẳng (P) và mặt phẳng (Q) song song với nhau. + Có hai hộp đựng cầu, mỗi hộp đựng 30 quả cầu được đánh số từ 1 đến 30. Chọn ngẫu nhiên từ mỗi hộp đó một quả cầu. Tính xác suất để trong hai quả cầu được chọn có tích hai số ghi trên hai quả cầu đó là một số chia hết cho 6. + Cho lục giác đều ABCDEF tâm O (như hình bên). Ảnh của đoạn thẳng AB qua phép quay tâm O, góc quay -60 độ là: A. Đoạn thẳng CD. B. Đoạn thẳng BC. C. Đoạn thẳng FA. D. Đoạn thẳng FE.
Đề thi HK1 Toán 11 năm 2020 - 2021 trường THPT chuyên Lê Quý Đôn - Khánh Hòa
Đề thi HK1 Toán 11 năm 2020 – 2021 trường THPT chuyên Lê Quý Đôn – Khánh Hòa được biên soạn theo dạng trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 30 câu, chiếm 06 điểm, phần tự luận gồm 03 câu, chiếm 04 điểm, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán 11 năm 2020 – 2021 trường THPT chuyên Lê Quý Đôn – Khánh Hòa : + Cho tứ diện ABCD. Gọi M là trung điểm của cạnh AD, G là trọng tâm của tam giác ABD và N là điểm thuộc cạnh BC sao cho NB = 2NC. Kết luận nào sau đây sai? A. NG // (BCM). B. NG // (ACD). C. NG và AB chéo nhau. D. NG // CM. + Cho đường thẳng a song song với mặt phẳng (a). Mặt phẳng (b) chứa a và cắt mặt phẳng (a) theo giao tuyến d. Kết luận nào sau đây đúng? A. a và d cắt nhau. B. a và d trùng nhau. C a và d chéo nhau. D. a và d song song. + Xác suất sút bóng thành công tại chấm 11 mét của hai cầu thủ Quang Hải và Văn Đức lần lượt là 0,8 và 0,7. Biết mỗi cầu thủ sút một quả tại chấm 11 mét và hai người sút độc lập. Tính xác suất để ít nhất một người sút bóng thành công.