Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 2 (HK2) lớp 11 môn Toán năm 2022 2023 trường THPT Lê Quý Đôn Nam Định

Nội dung Đề học kì 2 (HK2) lớp 11 môn Toán năm 2022 2023 trường THPT Lê Quý Đôn Nam Định Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kì 2 môn Toán lớp 11 năm học 2022 – 2023 trường THPT Lê Quý Đôn, tỉnh Nam Định; đề thi có đáp án trắc nghiệm mã đề Mã 101 Mã 102 Mã 103 Mã 104. Trích dẫn Đề học kì 2 Toán lớp 11 năm 2022 – 2023 trường THPT Lê Quý Đôn – Nam Định : + Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC), gọi M là điểm thuộc cạnh SC sao cho MC MS 2. Biết AB BC 3 3 3 tính khoảng cách giữa hai đường thẳng AC và BM. + Cho hình chóp tứ giác đều S ABCD có O là tâm của hình vuông ABCD AB a SO a 2. Gọi (P) là mặt phẳng qua AB và vuông góc với mặt phẳng (SCD). Thiết diện của (P) và hình chóp S ABCD là hình gì? A. Hình thang vuông. B. Tam giác cân. C. Hình thang cân. D. Hình bình hành. + Cho hình lăng trụ ABC A B C có tất cả các cạnh đều bằng a. Góc tạo bởi cạnh bên và mặt phẳng đáy bằng 30°. Hình chiếu H của A trên mặt phẳng (ABC) thuộc đường thẳng B C. Khoảng cách giữa hai mặt phẳng đáy là? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 2 Toán 11 năm 2020 - 2021 trường THPT Kim Liên - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kỳ 2 Toán 11 năm học 2020 – 2021 trường THPT Kim Liên, quận Đống Đa, thành phố Hà Nội; đề thi được biên soạn theo hình thức 50% trắc nghiệm + 50% tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết tự luận. Trích dẫn đề thi học kỳ 2 Toán 11 năm 2020 – 2021 trường THPT Kim Liên – Hà Nội : + Các số x, y, z theo thứ tự đó lập thành một cấp số cộng; đồng thời, các số x, y, z + 49 theo thứ tự đó lập thành một cấp số nhân. Hãy tìm ba số x, y và z biết rằng tổng của chúng bằng 24. + Chọn mệnh đề đúng? Trong không gian ta có: A. Mặt phẳng Q và mặt phẳng P cùng vuông góc với một đường thẳng d thì Q song song với P. B. Mặt phẳng Q và mặt phẳng P phân biệt cùng vuông góc với một mặt phẳng R thì Q song song với P. C. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. D. Hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì song song với nhau. + Một đoàn tàu chuyển động thẳng khởi hành từ một nhà ga có phương trình 𝑠 = 6𝑡2 − 𝑡3 (t tính bằng giây, s tính bằng mét). Tìm thời điểm t mà tại đó vận tốc của đoàn tàu đạt giá trị lớn nhất?
Đề thi học kỳ 2 Toán 11 năm 2020 - 2021 trường THPT chuyên KHTN - Hà Nội
Đề thi học kỳ 2 Toán 11 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Nguyễn Du - TP HCM
Nhằm giúp các em học sinh lớp 11 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 11 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Nguyễn Du, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT Nguyễn Du – TP HCM : + Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng a3. Gọi O là tâm của đáy ABC và M là trung điểm cạnh BC. a) Chứng minh BC vuông góc mặt phẳng (SAM). b) Tính khoảng cách từ điểm O đến mặt phẳng (SBC), từ đó suy ra khoảng cách từ điểm A đến mặt phẳng (SBC). + Cho hàm số có đồ thị (C0. Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến vuông góc với đường thẳng có phương trình. + Tính đạo hàm của các hàm số sau.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Mạc Đĩnh Chi - TP HCM
Nhằm giúp các em học sinh lớp 11 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 11 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Mạc Đĩnh Chi, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT Mạc Đĩnh Chi – TP HCM : + Chứng minh phương trình có ít nhất một nghiệm dương. + Tính các giới hạn sau. + Cho hàm số có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x0 = -1.