Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kỳ 2 Toán 9 năm 2022 - 2023 phòng GDĐT Giao Thuỷ - Nam Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng cuối học kỳ 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Giao Thuỷ, tỉnh Nam Định; đề thi gồm 02 trang, hình thức 20% trắc nghiệm + 80% tự luận, thời gian làm bài 120 phút. Trích dẫn Đề học kỳ 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT Giao Thuỷ – Nam Định : + Cho phương trình x2 — 4x + m = 0 (1) (với m là tham số). 1) Cho biết phương trình (1) có hai nghiệm, trong đó x = 1 là một nghiệm. Hãy tìm m và nghiệm còn lại. 2) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm phân biệt x1, x2 thỏa mãn: m(x1 – x2) + 20 = 0. + Cho hình thang ABCD vuông tại A và D, cung tròn (D;DA) cắt cạnh DC tại E (hình vẽ bên). Biết AB = AD = 12cm; CD = 2AB. Tính diện tích phần hình tô đậm trong hình vẽ bên. (Lấy pi ~ 3,14; kết quả làm tròn đến chữ số chữ số hàng đơn vị). + Từ điểm M ở ngoài đường tròn (O) vẽ tiếp tuyến MA (A là tiếp điểm) và cát tuyến MBC đến (O). (A thuộc cung nhỏ BC). Kẻ OH vuông góc với BC tại H. a) Chứng minh tứ giác MAHO nội tiếp và MA.AB = MB.AC. b) Kẻ đường kính AK của đường tròn (O), tia MO cắt CK tại E, tia AE cắt (O) tại D (D khác A). Chứng minh tam giác ABH ~ tam giác EKO và tứ giác ABKD là hình chữ nhật.

Nguồn: toanmath.com

Đọc Sách

Đề học kì 2 Toán 9 năm 2022 - 2023 trường THCS Trưng Vương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Trưng Vương, quận Hoàn Kiếm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Bảy ngày 22 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học kì 2 Toán 9 năm 2022 – 2023 trường THCS Trưng Vương – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Mặt sàn phòng hội trường của trường X có dạng hình chữ nhật. Nhà trường muốn sửa lại căn phòng cho rộng rãi hơn. Nếu tăng chiều dài thêm 2m và tăng chiều rộng thêm 3m, phòng hội trường sẽ rộng thêm 90m2. Nếu tăng chiều dài thêm 3m và tăng chiều rộng thêm 2m, phòng hội trường sẽ rộng thêm 87m2. Tính diện tích ban đầu của hội trường. + Trái bóng da tiêu chuẩn dùng trong thi đấu có diện tích bề mặt là 576pi cm2. Coi quả bóng có dạng hình cầu, tính thể tích của trái bóng (lấy pi ~ 3,14 ). + Cho tam giác nhọn MNP (MN < MP) nội tiếp đường tròn (O; R). Ba đường cao MA, NB, PC cắt nhau tại H. 1) Chứng minh rằng bốn điểm N, C, B, P cùng thuộc một đường tròn. Xác định tâm J của đường tròn đó. 2) Đường thẳng BC và đường thẳng NP nhau tại I. Chứng minh IB.IC = IN.IP. 3) Đường thẳng MI cắt đường đường tròn (O) tại điểm thứ hai là K. Chứng minh KMC = KBC và ba điểm K, H, J thẳng hàng.
Đề cuối học kì 2 Toán 9 năm 2022 - 2023 phòng GDĐT Long Biên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kì 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 21 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề cuối học kì 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT Long Biên – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một mảnh vườn hình chữ nhật có độ dài đường chéo là 15 m và chiều dài lớn hơn chiều rộng 3 m. Tính diện tích mảnh vườn đó. + Cho phương trình bậc hai 2×2 – x + m + 1 = 0 (x là ẩn, m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn điều kiện (x1 – x2) = 9/4. + Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O). Kẻ các đường cao BE, CF của tam giác ấy. Gọi H là giao điểm của BE và CF. Kẻ đường kính BK của (O). 1) Chứng minh tứ giác BCEF là tứ giác nội tiếp. 2) Chứng minh AH = CK. 3) Đường tròn đường kính AC cắt BE ở M, đường tròn đường kính AB cắt CF ở N. Chứng minh tam giác AMN là tam giác cân.
Đề cuối học kỳ 2 Toán 9 năm 2022 - 2023 phòng GDĐT Sơn Tây - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra đánh giá cuối học kỳ 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thị xã Sơn Tây, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 21 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối học kỳ 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT Sơn Tây – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Để chở hết 120 tấn hàng ủng hộ đồng bảo vùng cao biên giới, một đội xe dự định dùng một số xe cùng loại. Lúc sắp khởi hành, đội xe được bổ sung thêm 5 xe cùng loại, nhờ vậy so với dự định ban đầu mỗi xe phải chở ít hơn 2 tấn hàng. Hỏi lúc đầu đội có bao nhiêu xe? (biết rằng khối lượng hàng mỗi xe phải chở bằng nhau). + Một chiếc cốc có dạng hình trụ với chiều cao 8cm, bán kính đáy là 3cm. Hỏi chiếc cốc này có đựng được 180ml sữa không? (bỏ qua bề dày của đáy cốc). + Cho đường tròn (O) và đường thẳng d không đi qua tâm O cắt đường tròn tại hai điểm A và B. Gọi C là điểm thuộc đường thẳng d sao cho A nằm giữa B và C. Vẽ đường kính PQ vuông góc với dây AB tại D (P thuộc cung lớn AB). Tia CP cắt đường tròn tâm (O) tại điểm thứ hai là I (I khác P), AB cắt IQ tại K. 1) Chứng minh bốn điểm P, D, K, I cùng thuộc một đường tròn. 2) Chứng minh KB.IQ = BQ.BI. 3) Chứng minh IK là đường phân giác trong của tam giác AIB và AC/BC = AK/BK.
Đề cuối kỳ 2 Toán 9 năm 2022 - 2023 phòng GDĐT Ứng Hòa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề cuối kỳ 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT Ứng Hòa – Hà Nội : + Quãng đường AB dài 6km. Một người đi xe đạp từ A đến B với vận tốc không đổi. Khi từ B trở về A người đó giảm vận tốc 3km/h so với lúc đi từ A đến B. Biết thời gian lúc đi ít hơn thời gian lúc về là 6 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B. + Một quả bóng chuyền tiêu chuẩn thi đấu có kích thước đường kính 21cm. Tính diện tích da để làm một quả bóng chuyền. Lấy 3,14 (làm tròn đến chữ số thập phân thứ hai). + Cho điểm C nằm trên nửa đường tròn (O; R), đường kính AB sao cho cung AC lớn hơn cung BC (C khác B). Đường thẳng vuông góc với đường kính AB tại O cắt dây AC tại D. 1/ Chứng minh tứ giác BCDO nội tiếp. 2/ Chứng minh AD.AC = AO.AB. 3/ Tiếp tuyến tại C của đường tròn cắt đường thẳng đi qua D và song song với AB tại E. Tứ giác OEDA là hình gì? Vì sao?