Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT Đội Cấn Vĩnh Phúc

Nội dung Đề khảo sát lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT Đội Cấn Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng lần 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT Đội Cấn, tỉnh Vĩnh Phúc; đề thi gồm 06 trang, hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút; đề thi có đáp án mã đề 111. Trích dẫn Đề khảo sát lần 1 Toán lớp 11 năm 2023 – 2024 trường THPT Đội Cấn – Vĩnh Phúc : + Khi kí hợp đồng lao động với người lao động với bản hợp đồng có thời hạn 5 năm, một công ty đề xuất hai phương án trả lương như sau : Phương án 1: Năm thứ nhất, tiền lương là 120 triệu đồng, kể từ năm thứ hai trở đi, mỗi năm tiền lương tăng 22 triệu. Phương án 2: Quý thứ nhất, tiền lương là 30 triệu đồng, kể từ quý thứ hai, mỗi quý tăng 1,5 triệu đồng. Phương án 3 : Tháng thứ nhất, tiền lương là 6 triệu đồng, kể từ tháng thứ 2, mỗi tháng tăng 300 nghìn đồng. Nếu là người lao động được tuyển dụng, em sẽ chọn phương án nào để sau khi kết thúc hợp đồng, tổng số tiền lương thu được là nhiều nhất? A. Chọn phương án 2. B. Chọn phương án 1. C. Chọn phương án 3. D. Các phương án đều như nhau. + Cho tứ diện ABCD trong đó tam giác BCD không cân. Gọi M N lần lượt là trung điểm của AB CD và G là trung điểm MN. Gọi A1 là giao điểm của AG và (BCD). Khẳng định nào dưới đây đúng? A. A1 là tâm đường tròn ngoại tiếp tam giác BCD. B. A1 là trọng tâm tam giác BCD. C. A1 là tâm đường tròn nội tiếp tam giác BCD. D. A1 là trực tâm tam giác BCD. + Một cột điện dài 11 m đứng cách bức tường một khoảng 1,75 m, bức tường cao 3,75 m (Hình 1). Do gió bão, cột điện bị gãy, điểm cuối của cột tiếp xúc vuông góc với tường khiến cho bức tường bị nghiêng một góc α như trong Hình 2. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán THPT cấp tỉnh năm học 2018 2019 sở GD ĐT Phú Yên
Nội dung Đề thi chọn HSG Toán THPT cấp tỉnh năm học 2018 2019 sở GD ĐT Phú Yên Bản PDF Thứ Năm ngày 28 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Phú Yên tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán năm học 2018 – 2019. Đề thi chọn HSG Toán THPT cấp tỉnh năm học 2018 – 2019 sở GD&ĐT Phú Yên được biên soạn theo dạng tự luận với 06 bài toán, đề có thang điểm 20, thời gian thí sinh làm bài là 180 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm học 2018 – 2019 sở GD&ĐT Phú Yên : + Cho bốn số thực p, q, m, n thỏa mãn hệ thức: (q – n)^2 + (p – m)(pn – qm) < 0. Chứng minh rằng hai phương trình: x^2 + px + q = 0 và x^2 + mx + n = 0 đều có các nghiệm phân biệt và các nghiệm của chúng nằm xen kẽ nhau khi biểu diễn trên trục số. [ads] + Cho tam giác ABC có các cạnh BC = a, AC = b, AB = c. Gọi I là tâm đường tròn nội tiếp tam giác. a) Chứng minh rằng a.IA^2 + b.IB^2 + c.IC^2 = abc. b) Chứng minh rằng √a(bc – IA^2) + √(b(ca – IB^2) + √c(ab – IC^2) ≤ 6√abc. Hãy chỉ ra một trường hợp xảy ra dấu đẳng thức. + Cho x, y, z là 3 số thực thỏa mãn x^2 + y^2 + z^2 = 1. a) Tìm giá trị nhỏ nhất của biểu thức P = xy + yz + 2019zx. b) Tìm giá trị lớn nhất của biểu thức Q = xy + yz + 2zx.
Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán năm 2018 2019 sở GD ĐT Quảng Ngãi
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán năm 2018 2019 sở GD ĐT Quảng Ngãi Bản PDF Sáng thứ Sáu ngày 29 tháng 03 năm 2019, sở Giáo dục và Đào tạo Quảng Ngãi tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh Toán lớp 11 năm 2018 – 2019, đề thi được biên soạn theo hình thức tự luận với 06 bài toán, thời gian học sinh làm bài là 180 phút. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 11 năm 2018 – 2019 sở GD&ĐT Quảng Ngãi : + Gọi S là tập hợp tất cả các số tự nhiên gồm năm chữ số được chọn từ các chữ số 1; 2; 3; 4; 5; 6; 7. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn có mặt đúng ba chữ số khác nhau. [ads] + Cho hình chóp S.ABCD có đáy là hình chữ nhật, AD = 2a, AB = a; O là giao điểm của AC với BD, SO vuông góc với mặt phẳng (ABCD) và SO = 4. Gọi M là trung điểm của BC. a. Chứng minh đường thẳng SM vuông góc với mặt phẳng (SAD). b. Gọi φ là góc giữa đường thẳng SC và mặt phẳng (SAD), tính sinφ. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại A, có đỉnh B(-3;2), đường phân giác trong góc A có phương trình x + y – 7 = 0. Viết phương trình đường tròn nội tiếp tam giác ABC, biết diện tích tam giác ABC bằng 24 và A có hoành độ dương.
Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán THPT năm 2018 2019 sở GD ĐT Thanh Hóa
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán THPT năm 2018 2019 sở GD ĐT Thanh Hóa Bản PDF Thứ Năm ngày 21 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 hệ THPT năm học 2018 – 2019. Đề thi học sinh giỏi cấp tỉnh Toán lớp 11 THPT năm 2018 – 2019 sở GD&ĐT Thanh Hóa được biên soạn theo hình thức tự luận với 05 bài toán, thí sinh có 180 phút để hoàn thành bài thi, không kể thời gian giám thị coi thi phát đề, lời giải chi tiết của đề được biên soạn bởi thầy Nguyễn Xuân Chung, giáo viên Toán trường THPT Lê Lai – Ngọc Lặc – Thanh Hóa. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 11 THPT năm 2018 – 2019 sở GD&ĐT Thanh Hóa : + Có bao nhiêu số tự nhiên có 8 chữ số khác nhau mà có mặt hai chữ lẻ và ba chữ số chẵn, trong đó mỗi chữ số chẵn có mặt đúng hai lần?. [ads] + Trong hệ tọa độ Oxy, cho tam giác ABC nội tiếp đường tròn (C) tâm I, trọng tâm G(8/3;0), các điểm M(0;1), N(4;1) lần lượt đối xứng với I qua AB và AC, điểm K(2;-1) thuộc đường thẳng BC. Viết phương trình đường tròn (C). + Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Một mặt phẳng không qua S cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, P, Q thỏa mãn các hệ thức vectơ: SA = 2SM, SC = 3SP. Tính tỉ số SB/SN khi biểu thức T = (SB/SN)^2 + 4(SD/SQ)^2 đạt giá trị nhỏ nhất.
Đề thi học sinh giỏi lớp 11 môn Toán năm học 2018 – 2019 sở GD ĐT Hà Tĩnh
Nội dung Đề thi học sinh giỏi lớp 11 môn Toán năm học 2018 – 2019 sở GD ĐT Hà Tĩnh Bản PDF Ngày 21 tháng 03 năm 2019, sở Giáo dục và Đào tạo Hà Tĩnh tổ chức kỳ thi chọn học sinh giỏi Toán lớp 11 năm học 2018 – 2019, đề thi được biên soạn theo hình thức tự luận với 05 bài toán, thời gian học sinh làm bài thi là 180 phút, kỳ thi nhằm tuyển chọn các em học sinh lớp 11 giỏi môn Toán đang học tập tại các trường THPT tại tỉnh Hà Tĩnh để thành lập đội tuyển học sinh giỏi Toán lớp 11 cấp tỉnh, tham dự kỳ thi học sinh giỏi Toán lớp 11 cấp Quốc gia. Trích dẫn đề thi học sinh giỏi Toán lớp 11 năm học 2018 – 2019 sở GD&ĐT Hà Tĩnh : + Cho lưới ô vuông như hình vẽ, có một con kiến di chuyển từ điểm A đến điểm B bằng cách di chuyển trên cạnh để đi qua các điểm nút của lưới (điểm nút là đỉnh của các hình vuông nhỏ), mỗi bước nó di chuyển xuống dưới hoặc di chuyển sang phải để đến điểm nút gần nhất. Biết rằng nếu đến điểm C thì kiến sẽ bị ăn thịt. Giả sử kiến di chuyển một cách ngẫu nhiên và nó không biết tại C sẽ gặp nguy hiểm. Tính xác suất để kiến đến được điểm B. [ads] + Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật tâm O, cạnh AB = a, AD = 2a. Gọi M, N lần lượt là trung điểm của các cạnh SA, BC. Biết rằng SA = SB = SC = SD và góc giữa đường thẳng MN và mặt phẳng (ABCD) là 60°. a. Tính diện tích tam giác SBM theo a. b. Tính sin của góc giữa đường thẳng MN và mặt phẳng (SBD).