Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu luyện thi TN THPT 2022 môn Toán - Trần Thanh Hiếu (Quyển 1)

Tài liệu gồm 290 trang, được biên soạn bởi thầy giáo Trần Thanh Hiếu, tuyển tập các chuyên đề luyện thi TN THPT 2022 môn Toán. Mục lục tài liệu luyện thi TN THPT 2022 môn Toán – Trần Thanh Hiếu (Quyển 1): PHẦN 1 : GIẢI TÍCH. Chương 1 : Ứng dụng đạo hàm khảo sát và vẽ đồ thị hàm số. Bài 1 : Sự đồng biến – nghịch biến của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm khoảng đơn điệu của hàm số cho bằng công thức. 2. Tìm khoảng đơn điệu của hàm số cho bằng bảng biến thiên đồ thị. 3. Tìm m đề hàm số y = ax3 + bx2 + cx + d đồng biến – nghịch biến trên R. 4. Biện luận tính đồng biến – nghịch biến của hàm số trên khoảng, đoạn cho trước là tập con của R. 5. Biện luận tính đồng biến – nghịch biến của hàm phân thức y = (ax + b)/(cx + d). 6. Đồng biến – nghịch biến của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Cực trị của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm cực trị của hàm số cho bằng công thức. 2. Xác định cực trị hàm số cho bằng bảng biến thiên, đồ thị. 3. Tìm m đề hàm số đạt cực trị tại điểm x0. 4. Biện luận cực trị của hàm số bậc ba. 5. Biện luận cực trị của hàm số trùng phương. 6. Cực trị của hàm chứa dấu trị tuyệt đối, hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Giá trị lớn nhất – giá trị nhỏ nhất. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Max – min của hàm số cho bằng công thức. 2. Max – min của hàm số cho bằng bảng biế thiên, đồ thị. 3. Tìm tham số m theo yêu cầu max – min. 4. Max -min của hàm hợp. 5. Bài toán ứng dụng max – min. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Đường tiệm cận của đồ thị hàm số. A. Lý thuyết cơ bản càn nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm tiệm cận đứng – tiệm cận ngang của hàm số hữu tỉ. 2. Đường tiệm cận cho bởi bảng biến thiên, đồ thị. 3. Tìm m theo yêu cầu về tiệm cận của bài toán. 4. Tiệm cận của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 5 : Đồ thị các hàm số thường gặp. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng đồ thị hàm số bậc ba. 2. Nhận dạng đồ thị hàm số trùng phương. 3. Nhận dạng đồ thị hàm số nhất biến. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Sự tương giao của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Giải, biện luận phương trình bằng bảng biến thiên đồ thị. 2. Xác định, biện luận giao điểm của đồ thị hàm số bậc ba và đường cong (đường thẳng). 3. Xác định, biện luận giao điểm của đồ thị hàm số trùng phương và đường cong (đường thẳng). 4. Xác định, biện luận giao điểm của đồ thị hàm số nhất biến và đường cong (đường thẳng). 5. Ứng dụng đồ thị biện luận nghiệm bất phương trình. 6. Tương giao hàm hợp, hàm chứa dấu trị tuyệt đối. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Phương trình tiếp tuyến của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình tiếp tuyến biết x0 hoặc điểm M(x0;y0). 2. Phương trình tiếp tuyết biết tung độ y0. 3. Phương trình tiếp tuyến biết hệ số góc k. 4. Phương trình tiếp tuyến đi qua điểm A(x;y) không thuộc đồ thị hàm số. C. Phiếu học tập. Phiếu học tập số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Hàm số lũy thừa – hàm số mũ – hàm số logarit. Bài 1 : Lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị biểu thức. 2. Rút gọn biểu thức. 3. So sánh lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Hàm số lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định của hàm số lũy thừa. 2. Đạo hàm của hàm số lũy thừa. 3. Nhận dạng đồ thị hàm số lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị, rút gọn biểu thức logarit. 2. So sánh logarit. 3. Phân tích, biểu diễn logarit theo các logarit đã biết. 4. Biến đổi logarit tổng hợp. C. Phiếu học tập. Phiếu học tập số 1. Bài 4 : Hàm số mũ – hàm số logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định hàm số mũ – logarit. 2. Đạo hàm hàm số mũ – logarit. 3. Nhận dạng đồ thị hàm số mũ – logarit. C. Phiếu học tập. Phiếu học tập số 1. Bài 5 : Phương trình mũ – Phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình mũ -logarit cơ bản. 2. Phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Phương trình mũ – logarit biến đổi tổng hợp. 4. Phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Bất phương trình mũ – bất phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bất phương trình mũ – logarit cơ bản. 2. Bất phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Bất phương trình mũ – logarit biến đổi tổng hợp. 4. Bất phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Bất phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Ứng dụng và bài toán Max – Min. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bài toán lãi suất – tăng trưởng. 2. Max – min, bài toán tổng hợp nhiều biến. C. Phiếu học tập. Phiếu học tạp số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. PHẦN 2 : HÌNH HỌC. Chương 1 : Khối đa diện. Bài 1 : Khái niệm về khối đa diện. A. Lý thyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng hình đa diện. 2. Số cạnh, số mặt, số đỉnh của hình đa diện. 3. Phân chia, lắp ghép khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Khối đa diện lồi và khối đa diện đều. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng khối đa diện lồi – đa diện đều. 2. Mặt phẳng đối xứng của khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Thể tích khối chóp. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối chóp có cạnh bên vuông góc với mặt đáy. 2. Khối chóp có mặt bên vuông góc với mặt đáy. 3. Khối chóp đều. 4. Góc, khoảng cách liên quan đến khối chóp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Thể tích khối lắng trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối lăng trụ đứng tam giác. 2. Khối lăng trụ đứng tứ giác (lập phương, hình hộp chữ nhật). 3. Khối lăng trụ xiên. 4. Góc, khoảng cách liên quan đến khối lăng trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Mặt nón – mặt trụ – mặt cầu. Bài 1 : Mặt nón – khối nón. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình nón. 2. Quay tạo thành hình nón. 3. Thiết diện qua trục, góc ở đỉnh. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình nón. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Mặt trụ – khối trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình trụ. 2. Quay tạo thành hình trụ. 3. Thiết diện qua trục. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình trụ. 6. Toán tổng hợp hình trụ – khối trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Mặt cầu – khối cầu. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của khối cầu. 2. Ngoại tiếp hình chóp. 3. Ngoại tiếp lăng trụ đứng, lập phương, hộp chữ nhật. 4. Ngoại tiếp hình nón – hình trụ. 5. Mặt phẳng cắt mặt cầu. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02.

Nguồn: toanmath.com

Đọc Sách

Sổ tay Hình học 10 - 11 - 12
Cuốn sổ tay Hình học 10 – 11 – 12 gồm 76 trang giúp học sinh tra cứu nhanh lý thuyết, công thức và phương pháp giải các dạng toán Hình học lớp 10, 11, 12. Nội dung sổ tay bao gồm 5 chương: 1. Vectơ 2. Hệ thức lượng trong tam giác 3. Tọa độ trong không gian 2 chiều 4. Hình học không gian cổ điển 5. Tọa độ trong không gian 3 chiều  [ads] Bạn đọc có thể xem thêm Sổ tay Đại số và Giải tích 10 – 11 – 12
Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 8 - 9 - 10)
Bản Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 8 – 9 – 10) Advance Version này chứa 90% tâm pháp và chiêu thức nhưng cũng giúp các hạ tăng công lực rất nhiều. Các bạn chưa nắm vững các kỹ thuật Casio cơ bản có thể tham khảo cuốn Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 5 – 8)  Danh mục sách : + Giải đề chính thức 2017 + Giải đề minh họa 2017 lần 3 + Các kỹ năng Casio cơ bản [ads] + Một số dạng toán lớp 11 + Hàm số + Mũ – Logarit + Nguyên hàm – Tích phân + Số phức + Hình Oxyz + Hình học không gian + Toán ứng dụng
Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 5 - 8)
Với mong muốn giúp đỡ các em đẩy mạnh tốc độ làm bài, tránh mất thời gian vào những câu dễ, dành thời gian cho câu khó để đạt điểm cao hơn trong kỳ thi thì tác giả Nguyễn Thế Lực đã viết một cuốn Bí Kíp Casio được hệ thống tuyệt kỹ theo chuyên đề có lời giải chi tiết. Đây là bộ Skill Casio Basic Version dành cho các sĩ tử mong muốn đạt 5 – 8 điểm môn Toán trong kỳ thi THPT Quốc gia, các sĩ tử muốn luyện đạt điểm 8 – 9 – 10 có thể xem thêm cuốn Advance Version Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 8 – 9 – 10). Nội dung sách : Đề minh họa lần 1, 2 và đề chính thức 2017 kèm đáp án và lời giải chi tiết Bộ tuyệt kỹ Casio 7 ngày 7 điểm Bộ Cửu Âm Chân Kinh: Thập Nhất Thần Chưởng + Tâm pháp 1. Lượng giác + Tâm pháp 2. Tổ hợp – Nhị thức Niu-tơn + Tâm pháp 3. Tu luyện xác suất + Tâm pháp 4. Dãy số, cấp số cộng và cấp số nhân + Tâm pháp 5. Giới hạn – Đạo hàm Bộ Cửu Dương Thần Công: Thập Nhị Đại Pháp [ads] Tâm pháp 1. Hàm số + Tuyệt kỹ 1. Casio giải nhanh sự biến thiên + Tuyệt kỹ 2. Casio hạ gục cực trị + Tuyệt kỹ 3. Casio xử nhanh Min – Max + Tuyệt kỹ 4. Ứng dụng tìm giới hạn của Casio search nhanh tiệm cận + Tuyệt kỹ 5. Casio support tiếp tuyến + Tuyệt kỹ 6. Kỹ thuật Casio giải toán tương giao đồ thị Tâm pháp 2. Mũ – Logarit + Tuyệt kỹ 7. Hàm số mũ – logarit dưới sự trị vì của Casio + Tuyệt kỹ 8. Casio tính, rút gọn, biểu diễn nhanh biểu thức + Tuyệt kỹ 9. Kỹ thuật Calc, Solve, Table hạ gục PT – BPT mũ – logarit Tâm pháp 3. Nguyên hàm – Tích phân + Tuyệt kỹ 10. Casio quyết chiến với nguyên hàm + Tuyệt kỹ 11. Tích phân thầm yêu Casio + Tuyệt kỹ 12. Casio xử đẹp “Tích phân chống Casio” Tâm pháp 4. Số phức + Tuyệt kỹ 13. Casio số phức cơ bản + Tuyệt kỹ 14. Giải nhanh phương trình số phức bằng Casio + Tuyệt kỹ 15. Casio hỗ trợ toán hình học số phức Tâm pháp 5. Hình học Oxyz + Tuyệt kỹ 16. Casio giải nhanh Oxyz Tâm pháp 6. Hình học không gian + Tuyệt kỹ 17. Luyện tay bo giải nhanh hình học 11 + 12 Tâm pháp 7. Toán ứng dụng
Sổ tay Đại số và Giải tích 10 - 11 - 12
Cuốn sổ tay gồm 84 trang giúp học sinh tra cứu nhanh lý thuyết, công thức và phương pháp giải các dạng toán Đại số và Giải tích lớp 10, 11, 12. Nội dung sổ tay bao gồm 15 chương: + Chương 1. Mệnh đề và tập hợp + Chương 2. Hàm số bậc nhất và bậc hai + Chương 3. Phương trình và hệ phương trình + Chương 4. Bất đẳng thức và bất phương trình + Chương 5. Thống kê + Chương 6. Cung và góc lượng giác + Chương 7. Hàm số lượng giác [ads] + Chương 8. Tổ hợp và xác suất + Chương 9. Dãy số + Chương 10. Giới hạn + Chương 11. Đạo hàm + Chương 12. Khảo sát hàm số + Chương 13. Lũy thừa và logarit + Chương 14. Nguyên hàm và tích phân + Chương 15. Số phức Bạn đọc có thể xem thêm Sổ tay Hình học 10 – 11 – 12