Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu luyện thi TN THPT 2022 môn Toán - Trần Thanh Hiếu (Quyển 1)

Tài liệu gồm 290 trang, được biên soạn bởi thầy giáo Trần Thanh Hiếu, tuyển tập các chuyên đề luyện thi TN THPT 2022 môn Toán. Mục lục tài liệu luyện thi TN THPT 2022 môn Toán – Trần Thanh Hiếu (Quyển 1): PHẦN 1 : GIẢI TÍCH. Chương 1 : Ứng dụng đạo hàm khảo sát và vẽ đồ thị hàm số. Bài 1 : Sự đồng biến – nghịch biến của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm khoảng đơn điệu của hàm số cho bằng công thức. 2. Tìm khoảng đơn điệu của hàm số cho bằng bảng biến thiên đồ thị. 3. Tìm m đề hàm số y = ax3 + bx2 + cx + d đồng biến – nghịch biến trên R. 4. Biện luận tính đồng biến – nghịch biến của hàm số trên khoảng, đoạn cho trước là tập con của R. 5. Biện luận tính đồng biến – nghịch biến của hàm phân thức y = (ax + b)/(cx + d). 6. Đồng biến – nghịch biến của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Cực trị của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm cực trị của hàm số cho bằng công thức. 2. Xác định cực trị hàm số cho bằng bảng biến thiên, đồ thị. 3. Tìm m đề hàm số đạt cực trị tại điểm x0. 4. Biện luận cực trị của hàm số bậc ba. 5. Biện luận cực trị của hàm số trùng phương. 6. Cực trị của hàm chứa dấu trị tuyệt đối, hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Giá trị lớn nhất – giá trị nhỏ nhất. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Max – min của hàm số cho bằng công thức. 2. Max – min của hàm số cho bằng bảng biế thiên, đồ thị. 3. Tìm tham số m theo yêu cầu max – min. 4. Max -min của hàm hợp. 5. Bài toán ứng dụng max – min. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Đường tiệm cận của đồ thị hàm số. A. Lý thuyết cơ bản càn nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm tiệm cận đứng – tiệm cận ngang của hàm số hữu tỉ. 2. Đường tiệm cận cho bởi bảng biến thiên, đồ thị. 3. Tìm m theo yêu cầu về tiệm cận của bài toán. 4. Tiệm cận của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 5 : Đồ thị các hàm số thường gặp. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng đồ thị hàm số bậc ba. 2. Nhận dạng đồ thị hàm số trùng phương. 3. Nhận dạng đồ thị hàm số nhất biến. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Sự tương giao của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Giải, biện luận phương trình bằng bảng biến thiên đồ thị. 2. Xác định, biện luận giao điểm của đồ thị hàm số bậc ba và đường cong (đường thẳng). 3. Xác định, biện luận giao điểm của đồ thị hàm số trùng phương và đường cong (đường thẳng). 4. Xác định, biện luận giao điểm của đồ thị hàm số nhất biến và đường cong (đường thẳng). 5. Ứng dụng đồ thị biện luận nghiệm bất phương trình. 6. Tương giao hàm hợp, hàm chứa dấu trị tuyệt đối. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Phương trình tiếp tuyến của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình tiếp tuyến biết x0 hoặc điểm M(x0;y0). 2. Phương trình tiếp tuyết biết tung độ y0. 3. Phương trình tiếp tuyến biết hệ số góc k. 4. Phương trình tiếp tuyến đi qua điểm A(x;y) không thuộc đồ thị hàm số. C. Phiếu học tập. Phiếu học tập số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Hàm số lũy thừa – hàm số mũ – hàm số logarit. Bài 1 : Lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị biểu thức. 2. Rút gọn biểu thức. 3. So sánh lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Hàm số lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định của hàm số lũy thừa. 2. Đạo hàm của hàm số lũy thừa. 3. Nhận dạng đồ thị hàm số lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị, rút gọn biểu thức logarit. 2. So sánh logarit. 3. Phân tích, biểu diễn logarit theo các logarit đã biết. 4. Biến đổi logarit tổng hợp. C. Phiếu học tập. Phiếu học tập số 1. Bài 4 : Hàm số mũ – hàm số logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định hàm số mũ – logarit. 2. Đạo hàm hàm số mũ – logarit. 3. Nhận dạng đồ thị hàm số mũ – logarit. C. Phiếu học tập. Phiếu học tập số 1. Bài 5 : Phương trình mũ – Phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình mũ -logarit cơ bản. 2. Phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Phương trình mũ – logarit biến đổi tổng hợp. 4. Phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Bất phương trình mũ – bất phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bất phương trình mũ – logarit cơ bản. 2. Bất phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Bất phương trình mũ – logarit biến đổi tổng hợp. 4. Bất phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Bất phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Ứng dụng và bài toán Max – Min. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bài toán lãi suất – tăng trưởng. 2. Max – min, bài toán tổng hợp nhiều biến. C. Phiếu học tập. Phiếu học tạp số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. PHẦN 2 : HÌNH HỌC. Chương 1 : Khối đa diện. Bài 1 : Khái niệm về khối đa diện. A. Lý thyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng hình đa diện. 2. Số cạnh, số mặt, số đỉnh của hình đa diện. 3. Phân chia, lắp ghép khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Khối đa diện lồi và khối đa diện đều. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng khối đa diện lồi – đa diện đều. 2. Mặt phẳng đối xứng của khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Thể tích khối chóp. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối chóp có cạnh bên vuông góc với mặt đáy. 2. Khối chóp có mặt bên vuông góc với mặt đáy. 3. Khối chóp đều. 4. Góc, khoảng cách liên quan đến khối chóp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Thể tích khối lắng trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối lăng trụ đứng tam giác. 2. Khối lăng trụ đứng tứ giác (lập phương, hình hộp chữ nhật). 3. Khối lăng trụ xiên. 4. Góc, khoảng cách liên quan đến khối lăng trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Mặt nón – mặt trụ – mặt cầu. Bài 1 : Mặt nón – khối nón. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình nón. 2. Quay tạo thành hình nón. 3. Thiết diện qua trục, góc ở đỉnh. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình nón. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Mặt trụ – khối trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình trụ. 2. Quay tạo thành hình trụ. 3. Thiết diện qua trục. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình trụ. 6. Toán tổng hợp hình trụ – khối trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Mặt cầu – khối cầu. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của khối cầu. 2. Ngoại tiếp hình chóp. 3. Ngoại tiếp lăng trụ đứng, lập phương, hộp chữ nhật. 4. Ngoại tiếp hình nón – hình trụ. 5. Mặt phẳng cắt mặt cầu. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu
Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu Bản PDF - Nội dung bài viết Trường học mở cửa trở lại sau thời gian nghỉ kéo dài Trường học mở cửa trở lại sau thời gian nghỉ kéo dài Sau thời gian nghỉ học kéo dài do ảnh hưởng của dịch bệnh, các trường THPT trên khắp cả nước đã bắt đầu cho học sinh quay trở lại trường. Đây là lúc các học sinh lớp 12 cần tự ôn tập để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học trong năm học 2019 – 2020. Dịch bệnh đã gây ra nhiều thách thức cho hệ thống giáo dục, khiến cho việc học tập trở nên hiệu quả hơn. Vì vậy, việc ôn tập kiến thức từ trước thành ra cực kỳ quan trọng, giúp học sinh tự tin hơn khi tham gia vào các kỳ thi quan trọng. Các em học sinh cũng nên lập kế hoạch ôn tập hợp lý, chia đều thời gian và tập trung vào những môn học mình yếu để nâng cao điểm số. Hơn nữa, việc tham gia vào các bài tập trắc nghiệm bài toán tối ưu cũng là một phương pháp hiệu quả giúp củng cố kiến thức và rèn luyện kỹ năng giải quyết vấn đề cho học sinh. Chúc các em học sinh lớp 12 có một kỳ thi thành công và đạt kết quả cao trong năm học này!
Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán thực tế
Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán thực tế Bản PDF - Nội dung bài viết Khái quát kiến thức về lãi suất ngân hàng và bài toán tăng trưởng dân sốI. Các dạng toán về lãi suất ngân hàngII. Bài toán tăng trưởng dân sốBài tập trắc nghiệm và đáp án Khái quát kiến thức về lãi suất ngân hàng và bài toán tăng trưởng dân số Trong phần này, chúng ta sẽ tóm tắt những kiến thức cơ bản về lãi suất ngân hàng và bài toán tăng trưởng dân số. I. Các dạng toán về lãi suất ngân hàng 1. Lãi đơn: Được tính dựa trên số tiền gửi và tỷ lệ lãi suất cố định. 2. Lãi kép: Là lãi được tính trên số tiền gửi cũ và lãi cũ. 3. Lãi kép liên tục: Là lãi được tính trên số tiền gửi ban đầu và lãi được cộng dồn liên tục. 4. Công thức tính tiền gửi hàng tháng cho vay: cho thuê nhà, cho thuê xe, etc. 5. Công thức tính tiền gửi ngân hàng và rút tiền gửi hàng tháng. 6. Công thức tính tiền vay vốn trả góp: Cần tính số tiền phải trả mỗi tháng. 7. Công thức tính tăng lương: Tính lương theo tỷ lệ tăng hàng năm. II. Bài toán tăng trưởng dân số Đây là bài toán liên quan đến việc dự đoán tăng trưởng dân số trong tương lai dựa trên các yếu tố như tỷ lệ sinh, tỷ lệ chết, và tỷ lệ nhập cư. Bài tập trắc nghiệm và đáp án Trong phần này, chúng ta sẽ cùng giải những bài tập trắc nghiệm liên quan đến lãi suất ngân hàng và bài toán tăng trưởng dân số. Các đáp án và hướng dẫn giải cũng được cung cấp để giúp bạn hiểu rõ hơn về chủ đề này.
Phương pháp hàm số đặc trưng Nguyễn Văn Rin
Nội dung Phương pháp hàm số đặc trưng Nguyễn Văn Rin Bản PDF - Nội dung bài viết Phương pháp hàm số đặc trưng của Nguyễn Văn Rin Phương pháp hàm số đặc trưng của Nguyễn Văn Rin Tài liệu này bao gồm 43 trang được tổng hợp và biên soạn bởi thầy giáo Nguyễn Văn Rin. Trong tài liệu, thầy Rin trình bày cơ sở lý thuyết và giới thiệu một số ví dụ cụ thể áp dụng phương pháp hàm số đặc trưng trong các trường hợp khác nhau. Việc này giúp sinh viên hiểu rõ hơn về cách áp dụng phương pháp này trong thực tế và nâng cao kỹ năng giải quyết vấn đề của họ.
Các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT
Nội dung Các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT Bản PDF - Nội dung bài viết Cách làm bài nhanh chóng với tài liệu "Các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT" Cách làm bài nhanh chóng với tài liệu "Các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT" Tài liệu "Các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT" là một công cụ hữu ích giúp học sinh khối 12 ôn tập hiệu quả cho kỳ thi THPT Quốc gia. Với 283 trang, tài liệu cung cấp hướng dẫn chi tiết và dễ hiểu về cách giải nhanh các dạng bài tập thường gặp trong đề thi môn Toán. Tác giả đã phân tích từng bài toán một và cung cấp lời giải tự luận trước khi giới thiệu các "mẹo" giúp tìm nhanh đáp án. Các công thức giải nhanh được thiết lập từ các bài toán tổng quát hóa, giúp học sinh tiết kiệm thời gian khi làm bài. Nội dung tài liệu được chia thành nhiều phần, từ việc ứng dụng đạo hàm cho quan hệ giữa tính đơn điệu và đạo hàm của hàm số đến việc giải các bài tập về số phức và phương pháp tọa độ trong không gian. Mỗi chủ đề được trình bày một cách logic và hệ thống, giúp học sinh hiểu rõ vấn đề và áp dụng linh hoạt khi làm bài. Tài liệu cũng đưa ra các ví dụ minh họa và bài tập để học sinh rèn luyện kỹ năng giải bài nhanh chóng và chính xác. Bên cạnh đó, việc sử dụng máy tính cầm tay như Casio hoặc Vinacal cũng được khuyến khích để tăng cường khả năng giải bài tính toán phức tạp. Tóm lại, tài liệu "Các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT" là một nguồn tư liệu quý giá giúp học sinh nắm vững kiến thức và kỹ năng cần thiết cho kỳ thi THPT Quốc gia. Hãy sử dụng tài liệu này để chuẩn bị tốt nhất cho bài thi sắp tới!