Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu luyện thi TN THPT 2022 môn Toán - Trần Thanh Hiếu (Quyển 1)

Tài liệu gồm 290 trang, được biên soạn bởi thầy giáo Trần Thanh Hiếu, tuyển tập các chuyên đề luyện thi TN THPT 2022 môn Toán. Mục lục tài liệu luyện thi TN THPT 2022 môn Toán – Trần Thanh Hiếu (Quyển 1): PHẦN 1 : GIẢI TÍCH. Chương 1 : Ứng dụng đạo hàm khảo sát và vẽ đồ thị hàm số. Bài 1 : Sự đồng biến – nghịch biến của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm khoảng đơn điệu của hàm số cho bằng công thức. 2. Tìm khoảng đơn điệu của hàm số cho bằng bảng biến thiên đồ thị. 3. Tìm m đề hàm số y = ax3 + bx2 + cx + d đồng biến – nghịch biến trên R. 4. Biện luận tính đồng biến – nghịch biến của hàm số trên khoảng, đoạn cho trước là tập con của R. 5. Biện luận tính đồng biến – nghịch biến của hàm phân thức y = (ax + b)/(cx + d). 6. Đồng biến – nghịch biến của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Cực trị của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm cực trị của hàm số cho bằng công thức. 2. Xác định cực trị hàm số cho bằng bảng biến thiên, đồ thị. 3. Tìm m đề hàm số đạt cực trị tại điểm x0. 4. Biện luận cực trị của hàm số bậc ba. 5. Biện luận cực trị của hàm số trùng phương. 6. Cực trị của hàm chứa dấu trị tuyệt đối, hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Giá trị lớn nhất – giá trị nhỏ nhất. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Max – min của hàm số cho bằng công thức. 2. Max – min của hàm số cho bằng bảng biế thiên, đồ thị. 3. Tìm tham số m theo yêu cầu max – min. 4. Max -min của hàm hợp. 5. Bài toán ứng dụng max – min. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Đường tiệm cận của đồ thị hàm số. A. Lý thuyết cơ bản càn nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm tiệm cận đứng – tiệm cận ngang của hàm số hữu tỉ. 2. Đường tiệm cận cho bởi bảng biến thiên, đồ thị. 3. Tìm m theo yêu cầu về tiệm cận của bài toán. 4. Tiệm cận của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 5 : Đồ thị các hàm số thường gặp. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng đồ thị hàm số bậc ba. 2. Nhận dạng đồ thị hàm số trùng phương. 3. Nhận dạng đồ thị hàm số nhất biến. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Sự tương giao của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Giải, biện luận phương trình bằng bảng biến thiên đồ thị. 2. Xác định, biện luận giao điểm của đồ thị hàm số bậc ba và đường cong (đường thẳng). 3. Xác định, biện luận giao điểm của đồ thị hàm số trùng phương và đường cong (đường thẳng). 4. Xác định, biện luận giao điểm của đồ thị hàm số nhất biến và đường cong (đường thẳng). 5. Ứng dụng đồ thị biện luận nghiệm bất phương trình. 6. Tương giao hàm hợp, hàm chứa dấu trị tuyệt đối. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Phương trình tiếp tuyến của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình tiếp tuyến biết x0 hoặc điểm M(x0;y0). 2. Phương trình tiếp tuyết biết tung độ y0. 3. Phương trình tiếp tuyến biết hệ số góc k. 4. Phương trình tiếp tuyến đi qua điểm A(x;y) không thuộc đồ thị hàm số. C. Phiếu học tập. Phiếu học tập số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Hàm số lũy thừa – hàm số mũ – hàm số logarit. Bài 1 : Lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị biểu thức. 2. Rút gọn biểu thức. 3. So sánh lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Hàm số lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định của hàm số lũy thừa. 2. Đạo hàm của hàm số lũy thừa. 3. Nhận dạng đồ thị hàm số lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị, rút gọn biểu thức logarit. 2. So sánh logarit. 3. Phân tích, biểu diễn logarit theo các logarit đã biết. 4. Biến đổi logarit tổng hợp. C. Phiếu học tập. Phiếu học tập số 1. Bài 4 : Hàm số mũ – hàm số logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định hàm số mũ – logarit. 2. Đạo hàm hàm số mũ – logarit. 3. Nhận dạng đồ thị hàm số mũ – logarit. C. Phiếu học tập. Phiếu học tập số 1. Bài 5 : Phương trình mũ – Phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình mũ -logarit cơ bản. 2. Phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Phương trình mũ – logarit biến đổi tổng hợp. 4. Phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Bất phương trình mũ – bất phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bất phương trình mũ – logarit cơ bản. 2. Bất phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Bất phương trình mũ – logarit biến đổi tổng hợp. 4. Bất phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Bất phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Ứng dụng và bài toán Max – Min. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bài toán lãi suất – tăng trưởng. 2. Max – min, bài toán tổng hợp nhiều biến. C. Phiếu học tập. Phiếu học tạp số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. PHẦN 2 : HÌNH HỌC. Chương 1 : Khối đa diện. Bài 1 : Khái niệm về khối đa diện. A. Lý thyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng hình đa diện. 2. Số cạnh, số mặt, số đỉnh của hình đa diện. 3. Phân chia, lắp ghép khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Khối đa diện lồi và khối đa diện đều. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng khối đa diện lồi – đa diện đều. 2. Mặt phẳng đối xứng của khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Thể tích khối chóp. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối chóp có cạnh bên vuông góc với mặt đáy. 2. Khối chóp có mặt bên vuông góc với mặt đáy. 3. Khối chóp đều. 4. Góc, khoảng cách liên quan đến khối chóp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Thể tích khối lắng trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối lăng trụ đứng tam giác. 2. Khối lăng trụ đứng tứ giác (lập phương, hình hộp chữ nhật). 3. Khối lăng trụ xiên. 4. Góc, khoảng cách liên quan đến khối lăng trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Mặt nón – mặt trụ – mặt cầu. Bài 1 : Mặt nón – khối nón. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình nón. 2. Quay tạo thành hình nón. 3. Thiết diện qua trục, góc ở đỉnh. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình nón. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Mặt trụ – khối trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình trụ. 2. Quay tạo thành hình trụ. 3. Thiết diện qua trục. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình trụ. 6. Toán tổng hợp hình trụ – khối trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Mặt cầu – khối cầu. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của khối cầu. 2. Ngoại tiếp hình chóp. 3. Ngoại tiếp lăng trụ đứng, lập phương, hộp chữ nhật. 4. Ngoại tiếp hình nón – hình trụ. 5. Mặt phẳng cắt mặt cầu. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02.

Nguồn: toanmath.com

Đọc Sách

Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1)
Nội dung Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1) Bản PDF - Nội dung bài viết Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1)PHẦN 1: GIẢI TÍCH Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1) Tài liệu này được biên soạn bởi thầy giáo Trần Thanh Hiếu, gồm 290 trang, tập hợp các chuyên đề luyện thi TN THPT 2022 môn Toán. Nội dung chi tiết được chia thành các phần như sau: PHẦN 1: GIẢI TÍCH Chương 1: Ứng dụng đạo hàm khảo sát và vẽ đồ thị hàm số Bài 1: Sự đồng biến – nghịch biến của hàm số A. Lý thuyết cơ bản cần nhớ B. Thuật toán của một số dạng toán thường gặp 1. Tìm khoảng đơn điệu của hàm số 2. Tìm m để hàm số đồng biến – nghịch biến C. Phiếu học tập Phiếu học tập số 1 Phiếu học tập số 2 Bài 2: Cực trị của hàm số A. Lý thuyết cơ bản cần nhớ B. Thuật toán của một số dạng toán thường gặp 1. Tìm cực trị của hàm số 2. Biện luận cực trị của hàm số C. Phiếu học tập Phiếu học tập số 1 Phiếu học tập số 2 Bài 3: Giá trị lớn nhất – giá trị nhỏ nhất ... Hơn nữa, tài liệu còn đi sâu vào các phần khác như Hình học với chương trình rõ ràng, chi tiết và dễ hiểu giúp học sinh nắm vững kiến thức, chuẩn bị tốt cho kỳ thi sắp tới. Tóm lại, Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1) là công cụ hữu ích để học sinh tự ôn tập, rèn luyện kỹ năng giải bài tập, củng cố kiến thức và chuẩn bị tốt cho kỳ thi quan trọng.
Tổng hợp công thức Toán THPT Nguyễn Viết Hiếu
Nội dung Tổng hợp công thức Toán THPT Nguyễn Viết Hiếu Bản PDF - Nội dung bài viết Tổng hợp công thức Toán THPT Nguyễn Viết Hiếu Tổng hợp công thức Toán THPT Nguyễn Viết Hiếu Tài liệu này gồm tổng cộng 33 trang, được soạn bởi thầy giáo Nguyễn Viết Hiếu. Được biên soạn nhằm mục đích tổng hợp công thức Toán THPT cho cả ba khối lớp 10, 11 và 12. Được thiết kế để giúp học sinh có thể dễ dàng tra cứu và áp dụng trong quá trình học và ôn thi tốt nghiệp THPT môn Toán. Dưới đây là một số chủ đề chính được nhấn mạnh trong tài liệu: Hàm số: Bao gồm các công thức và tính chất về hàm số. Hàm số mũ, hàm số lũy thừa, hàm số logarithm: Giúp học sinh hiểu rõ về các loại hàm số này. Nguyên hàm, tích phân, ứng dụng: Cung cấp kiến thức cơ bản về nguyên hàm và tích phân, cũng như ứng dụng của chúng trong thực tế. Số phức: Một chủ đề quan trọng trong Toán THPT. Thể tích khối đa diện, khối tròn xoay: Thực hành tính toán và giải bài tập liên quan đến các loại hình học đặc biệt. Không gian OXYZ, phép biến hình: Giúp học sinh hiểu rõ các khái niệm và tính chất của không gian và phép biến hình. Hình học không gian, đại số tổ hợp: Là những chủ đề chính trong tài liệu giúp nắm vững kiến thức cơ bản. Cấp số cộng, cấp số nhân, giới hạn, đạo hàm: Các công thức và phương pháp tính toán quan trọng trong Toán THPT. Tập hợp, hàm số, phương trình, biến phụ thuộc, thống kê, lượng giác: Cung cấp kiến thức đa dạng và phong phú. Vector, các phép toán vector, tích vô hướng: Những kiến thức hữu ích về vector và các phép toán liên quan. Hình Oxy: Thể hiện các tính chất và đặc điểm của hình học trên mặt phẳng Oxy. Tài liệu này sẽ là nguồn tư liệu hữu ích và đáng tin cậy để học sinh tự học và ôn thi Toán THPT một cách hiệu quả.
Phân tích, giải và xây dựng câu VD VDC trong đề TN THPT 2021 môn Toán (đợt 1)
Nội dung Phân tích, giải và xây dựng câu VD VDC trong đề TN THPT 2021 môn Toán (đợt 1) Bản PDF - Nội dung bài viết Tài liệu phân tích, giải và xây dựng câu VD - VDC trong đề TN THPT 2021 môn Toán (đợt 1) Tài liệu phân tích, giải và xây dựng câu VD - VDC trong đề TN THPT 2021 môn Toán (đợt 1) Tài liệu này bao gồm 60 trang và được biên soạn bởi nhóm giáo viên Toán Việt Nam. Mục đích chính của tài liệu là phân tích, định hướng tìm lời giải và xây dựng các bài toán tương tự các câu VD - VDC trong đề thi tốt nghiệp THPT năm 2021 môn Toán đợt 1. Trong kỳ thi tốt nghiệp THPT đợt 1 năm 2021, buổi thi môn Toán sẽ diễn ra vào chiều ngày 7/8/2021. Bài thi gồm 24 mã đề được lấy từ 4 mã đề gốc là 101, 102, 103, 104. Nội dung đề thi dựa trên chương trình THPT, chủ yếu là chương trình lớp 12. Các câu hỏi được phân thành các mức độ khác nhau để kiểm tra kiến thức của học sinh từ lớp 11 đến lớp 12. Để giúp học sinh ôn tập cho kỳ thi tốt nghiệp THPT đợt 2 năm 2021 diễn ra vào 6/7/8/2021, tài liệu này cung cấp thông tin cần thiết để giúp học sinh nắm chắc kiến thức, tiếp cận bài toán mới, lạ và rèn luyện kỹ năng thi trắc nghiệm môn Toán.
Các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán Phạm Hoàng Đăng
Nội dung Các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán Phạm Hoàng Đăng Bản PDF - Nội dung bài viết Các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán Phạm Hoàng ĐăngMục lục tài liệu Các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán Phạm Hoàng Đăng Tài liệu này được biên soạn bởi thầy giáo Phạm Hoàng Đăng và bao gồm 63 trang. Được tạo ra để giúp học sinh tổng ôn và vận dụng các chuyên đề cao cấp trong kỳ thi tốt nghiệp THPT quốc gia môn Toán. Mục tiêu của tài liệu là giúp học sinh chinh phục mức điểm cao từ 8 đến 10 trong đề thi. Mục lục tài liệu Chuyên đề 1. KHẢO SÁT HÀM SỐ A. Tìm tham số để hàm số đơn điệu trên K. Ví dụ, bài tập và đáp án. B. Giá trị lớn nhất, nhỏ nhất của hàm hợp. Ví dụ, bài tập và đáp án. C. Đơn điệu và cực trị của hàm số hợp. Bài tập mẫu, tương tự và đáp án. Chuyên đề 2. Phương trình mũ và lôgarít A. Dạng phương trình cô lập tham số. Ví dụ, bài tập và đáp án. B. Bài toán sử dụng hàm đặc trưng. Ví dụ, bài tập và đáp án. Chuyên đề 3. NGUYÊN HÀM - TÍCH PHÂN A. Tích phân hàm số cho bởi nhiều công thức. Ví dụ, bài tập và đáp án. B. Tích phân kết hợp bằng cách đổi biến & từng phần. Ví dụ, bài tập và đáp án. C. Tích phân hàm ẩn. Ví dụ, bài tập và đáp án. D. Diện tích hình phẳng và thể tích vật thể tròn xoay. Ví dụ, bài tập và đáp án. Chuyên đề 4. SỐ PHỨC A. Xác định các thuộc tính của số phức. Ví dụ, bài tập và đáp án. B. Cực trị của biểu thức chứa mô-đun số phức. Ví dụ, bài tập và đáp án. Chuyên đề 5. HÌNH HỌC KHÔNG GIAN A. Góc giữa đường thẳng và mặt phẳng. Ví dụ, bài tập và đáp án. B. Thể tích có chứa dữ liệu góc. Ví dụ, bài tập và đáp án. C. Khoảng cách từ điểm đến mặt phẳng. Ví dụ, bài tập và đáp án. D. Khoảng cách giữa hai đường thẳng chéo nhau. Ví dụ, bài tập và đáp án. E. Góc giữa hai mặt phẳng. Ví dụ, bài tập và đáp án. F. Thể tích khối đa diện liên quan góc, khoảng cách. Ví dụ, bài tập và đáp án. G. Bài toán cực trị (thực tế) trong nón trụ cầu. Ví dụ, bài tập và đáp án. Chuyên đề 6. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN A. Phương trình mặt phẳng, đường thẳng. Ví dụ, bài tập và đáp án. B. Cực trị hình học Oxyz. Ví dụ, bài tập và đáp án.