Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán hàm số lượng giác và phương trình lượng giác thường gặp

Hàm số lượng giác và phương trình lượng giác là một chủ đề kiến thức quan trọng không chỉ trong chương trình Đại số và Giải tích 11 mà còn chiếm một lượng điểm nhất định trong đề thi Trung học Phổ thông Quốc gia môn Toán. Để giúp các em rèn luyện kỹ năng giải bài tập, thầy Nguyễn Bảo Vương biên soạn và giới thiệu tài liệu các dạng toán hàm số lượng giác và phương trình lượng giác thường gặp. Tài liệu gồm 130 trang với phần lớn các bài toán được trích dẫn trong các đề thi thử môn Toán của các trường THPT và cơ sở GD&ĐT trên toàn quốc, các câu hỏi và bài tập đều có đáp án, được phân tích và giải chi tiết. Khái quát nội dung tài liệu các dạng toán hàm số lượng giác và phương trình lượng giác thường gặp: VẤN ĐỀ 1 . HÀM SỐ LƯỢNG GIÁC. Dạng toán 1. Tập xác định của hàm số lượng giác. Dạng toán 2. Tính tuần hoàn của hàm số lượng giác. Dạng toán 3. Tính chẵn, lẻ của hàm số lượng giác. Dạng toán 4. Tính đơn điệu của hàm số lượng giác. Dạng toán 5. Tập giá trị, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác. + Dạng toán 5.1 Biến đổi thông thường, sử dụng bất đẳng thức cơ bản của sin, cos. + Dạng toán 5.2 Đặt ẩn phụ. + Dạng toán 5.3 Áp dụng bất đẳng thức đại số. Dạng toán 6. Đồ thị của hàm số lượng giác. [ads] VẤN ĐỀ 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. Dạng toán 1. Phương trình sinx = a. + Dạng toán 1.1 Không có điều kiện nghiệm. + Dạng toán 1.2 Có điều kiện nghiệm. Dạng toán 2. Phương trình cosx = a. + Dạng toán 2.1 Không có điều kiện nghiệm. + Dạng toán 2.2 Có điều kiện nghiệm. Dạng toán 3. Phương trình tanx = a. + Dạng toán 2.1 Không có điều kiện nghiệm. + Dạng toán 2.2 Có điều kiện nghiệm. Dạng toán 4. Phương trình cotx = a. + Dạng toán 2.1 Không có điều kiện nghiệm. + Dạng toán 2.2 Có điều kiện nghiệm. Dạng toán 5. Một số bài toán tổng hợp [ads] VẤN ĐỀ 3 . MỘT SỐ PHƯƠNG TRÌNH THƯỜNG GẶP. Dạng toán 1. Giải và biện luận Phương trình bậc hai đối với một hàm số lượng giác. + Dạng toán 1.1 Không cần biết đổi. + Dạng toán 1.2 Biến đổi quy về phương trình bậc hai. + Dạng toán 1.3 Có điều kiện của nghiệm. Dạng toán 2. Giải và biện luận Phương trình bậc nhất đối với sin và cos. + Dạng toán 2.1 Không cần biến đổi. + Dạng toán 2.2 Cần biến đổi. + Dạng toán 2.3 Có điều kiện của nghiệm. + Dạng toán 2.3.1 Điều kiện nghiệm. + Dạng toán 2.3.2 Định m để phương trình có nghiệm. + Dạng toán 2.3.3 Sử dụng điều kiện có nghiệm để tìm giá trị lớn nhất – giá trị nhỏ nhất. Dạng toán 3. Giải và biện luận phương trình đẳng cấp. + Dạng toán 3.1 Không có điều kiện của nghiệm. + Dạng toán 3.3 Có điều kiện của nghiệm. + Dạng toán 3.3 Định m để phương trình có nghiệm. Dạng toán 4. Giải và biện luận Phương trình đối xứng. + Dạng toán 4.1 Không có điều kiện của nghiệm. + Dạng toán 4.2 Có điều kiện của nghiệm. Dạng toán 5. Biến đổi đưa về phương trình tích. + Dạng toán 5.1 Không có điều kiện của nghiệm. + Dạng toán 5.2 Có điều kiện của nghiệm. Dạng toán 6. Giải và biện luận phương trình lượng giác chứa ẩn ở mẫu. Dạng toán 7. Giải và biện luận Một số bài toán về phương trình lượng giác khác. Dạng toán 8. Giải và biện luận Phương trình lượng giác chứa tham số.

Nguồn: toanmath.com

Đọc Sách

Phân loại và phương pháp giải bài tập hàm số lượng giác và phương trình lượng giác
Tài liệu gồm 107 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập hàm số lượng giác và phương trình lượng giác, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1 (Toán 11). BÀI 1 . HÀM SỐ LƯỢNG GIÁC. Dạng 1. Tìm tập xác đinh của hàm số. Dạng 2. Xét tính chẵn lẻ của hàm số. Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác. Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó. BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. BÀI 3 . MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP. Dạng 1. Phương trình bậc nhất đối với một hàm số lượng giác. Dạng 2. Phương trình bậc nhất đối với sin x và cos x. Dạng 3. Phương trình bậc hai đối với một hàm số lượng giác. Dạng 4. Phương trình bậc hai đối với sin x và cos x. Dạng 5. Phương trình chứa sin x ± cos x và sin x . cos x.
Phân loại và phương pháp giải bài tập cung và góc lượng giác, công thức lượng giác
Tài liệu gồm 110 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập cung và góc lượng giác, công thức lượng giác, giúp học sinh lớp 10 tham khảo khi học chương trình Đại số 10 chương 6 (Toán 10). BÀI 1 . CUNG VÀ GÓC LƯỢNG GIÁC. Dạng toán: Xác định các yếu tố liên quan đến cung và góc lượng giác. BÀI 2 . GIÁ TRỊ LƯỢNG GIÁC MỘT CUNG. Dạng toán 1: Biểu diễn góc và cung lượng giác. Dạng toán 2: Xác định giá trị của biểu thức chứa góc đặc biệt, góc liên quan đặc biệt và dấu của giá trị lượng giác của góc lượng giác. Dạng toán 3: Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc góc x, đơn giản biểu thức. Dạng toán 4: Tính giá trị của một biểu thức lượng giác khi biết một giá trị lượng giác. BÀI 3 . CÔNG THỨC LƯỢNG GIÁC. Dạng toán 1: Tính giá trị lượng giác, biểu thức lượng giác. Dạng toán 2: Xác định giá trị của một biểu thức lượng giác có điều kiện. Dạng toán 3: Chứng minh đẳng thức, đơn giản biểu thức lượng giác và chứng minh biểu thức lượng giác không phụ thuộc vào biến. Dạng toán 4: Bất đẳng thức lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác. Dạng toán 5: Chứng minh đẳng thức, bất đẳng thức trong tam giác.
Lý thuyết, các dạng toán và bài tập cung và góc lượng giác, công thức lượng giác
Tài liệu gồm 76 trang, tóm tắt lý thuyết, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề cung và góc lượng giác, công thức lượng giác, giúp học sinh lớp 10 tham khảo khi học chương trình Đại số 10 chương 6 (Toán 10). 1. CUNG VÀ GÓC LƯỢNG GIÁC I. Tóm tắt lí thuyết. 1. Khái niệm cung và góc lượng giác. 2. Số đo của cung và góc lượng giác. II. Các dạng toán. Dạng 1. Liên hệ giữa độ và rađian. Dạng 2. Độ dài cung lượng giác. Dạng 3. Biểu diễn cung lượng giác trên đường tròn lượng giác. 2. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT CUNG I. Tóm tắt lí thuyết. 1. Định nghĩa. 2. Hệ quả. 3. Ý nghĩa hình học của tang và côtang. 4. Công thức lượng giác cơ bản. 5. Giá trị lượng giác của các cung có liên quan đặc biệt. II. Các dạng toán. Dạng 1. Dấu của các giá trị lượng giác. Dạng 2. Tính giá trị lượng giác của một cung. Dạng 3. Sử dụng cung liên kết để tính giá trị lượng giác. Dạng 4. Rút gọn biểu thức và chứng minh đẳng thức. 3. CÔNG THỨC LƯỢNG GIÁC I. Công thức cộng. Dạng 1. Công thức cộng. II. Công thức nhân đôi. III. Các dạng toán. Dạng 2. Tính các giá trị lượng giác của các góc cho trước. Dạng 3. Rút gọn biểu thức cho trước. Dạng 4. Chứng minh đẳng thức lượng giác. IV. Công thức biến đổi. Dạng 5. Biến đổi một biểu thức thành một tổng hoặc thành một tích. Dạng 6. Chứng minh một đẳng thức lượng giác có sử dụng nhóm công thức biến đổi. Dạng 7. Dùng công thức biến đổi để tính giá trị (rút gọn) của một biểu thức lượng giác. Dạng 8. Nhận dạng tam giác. Một số hệ thức trong tam giác. 4. ĐỀ KIỂM TRA CHƯƠNG VI I. Đề số 1a. II. Đề số 1b. III. Đề số 2a. IV. Đề số 2b. V. Đề số 3a. VI. Đề số 3b. VII. Đề số 4a. VIII. Đề số 4b. IX. Đề số 5a. X. Đề số 5b.
Tuyển tập 198 câu VDC hàm số lượng giác và phương trình lượng giác
Tài liệu gồm 83 trang, được biên soạn bởi nhóm tác giả Tư Duy Mở, tuyển tập 198 câu vận dụng cao (VD – VDC) hàm số lượng giác và phương trình lượng giác, có đáp án và lời giải chi tiết; giúp học sinh khối 11 rèn luyện khi học tập chương trình Đại số và Giải tích 11 chương 1. Trích dẫn tài liệu tuyển tập 198 câu VDC hàm số lượng giác và phương trình lượng giác: + Gọi m/n là giá trị lớn nhất của a để bất phương trình √a3(x − 1)2 + √a(x − 1)2 6√4a3sin πx2 có ít nhất một nghiệm, trong đó m, n là các số nguyên dương và m/n là phân số tối giản. Tính giá trị của biểu thức P = 22m + n. + Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình cos 4x + 6 sinx cos x = m có hai nghiệm phân biệt trên đoạn h0;π4i. + Có bao nhiêu điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình (1 + sinx + cos x)tan(π − x) = sin 2x + 2 sinx + 2 cos x + 2?