Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán hàm số lượng giác và phương trình lượng giác thường gặp

Hàm số lượng giác và phương trình lượng giác là một chủ đề kiến thức quan trọng không chỉ trong chương trình Đại số và Giải tích 11 mà còn chiếm một lượng điểm nhất định trong đề thi Trung học Phổ thông Quốc gia môn Toán. Để giúp các em rèn luyện kỹ năng giải bài tập, thầy Nguyễn Bảo Vương biên soạn và giới thiệu tài liệu các dạng toán hàm số lượng giác và phương trình lượng giác thường gặp. Tài liệu gồm 130 trang với phần lớn các bài toán được trích dẫn trong các đề thi thử môn Toán của các trường THPT và cơ sở GD&ĐT trên toàn quốc, các câu hỏi và bài tập đều có đáp án, được phân tích và giải chi tiết. Khái quát nội dung tài liệu các dạng toán hàm số lượng giác và phương trình lượng giác thường gặp: VẤN ĐỀ 1 . HÀM SỐ LƯỢNG GIÁC. Dạng toán 1. Tập xác định của hàm số lượng giác. Dạng toán 2. Tính tuần hoàn của hàm số lượng giác. Dạng toán 3. Tính chẵn, lẻ của hàm số lượng giác. Dạng toán 4. Tính đơn điệu của hàm số lượng giác. Dạng toán 5. Tập giá trị, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác. + Dạng toán 5.1 Biến đổi thông thường, sử dụng bất đẳng thức cơ bản của sin, cos. + Dạng toán 5.2 Đặt ẩn phụ. + Dạng toán 5.3 Áp dụng bất đẳng thức đại số. Dạng toán 6. Đồ thị của hàm số lượng giác. [ads] VẤN ĐỀ 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. Dạng toán 1. Phương trình sinx = a. + Dạng toán 1.1 Không có điều kiện nghiệm. + Dạng toán 1.2 Có điều kiện nghiệm. Dạng toán 2. Phương trình cosx = a. + Dạng toán 2.1 Không có điều kiện nghiệm. + Dạng toán 2.2 Có điều kiện nghiệm. Dạng toán 3. Phương trình tanx = a. + Dạng toán 2.1 Không có điều kiện nghiệm. + Dạng toán 2.2 Có điều kiện nghiệm. Dạng toán 4. Phương trình cotx = a. + Dạng toán 2.1 Không có điều kiện nghiệm. + Dạng toán 2.2 Có điều kiện nghiệm. Dạng toán 5. Một số bài toán tổng hợp [ads] VẤN ĐỀ 3 . MỘT SỐ PHƯƠNG TRÌNH THƯỜNG GẶP. Dạng toán 1. Giải và biện luận Phương trình bậc hai đối với một hàm số lượng giác. + Dạng toán 1.1 Không cần biết đổi. + Dạng toán 1.2 Biến đổi quy về phương trình bậc hai. + Dạng toán 1.3 Có điều kiện của nghiệm. Dạng toán 2. Giải và biện luận Phương trình bậc nhất đối với sin và cos. + Dạng toán 2.1 Không cần biến đổi. + Dạng toán 2.2 Cần biến đổi. + Dạng toán 2.3 Có điều kiện của nghiệm. + Dạng toán 2.3.1 Điều kiện nghiệm. + Dạng toán 2.3.2 Định m để phương trình có nghiệm. + Dạng toán 2.3.3 Sử dụng điều kiện có nghiệm để tìm giá trị lớn nhất – giá trị nhỏ nhất. Dạng toán 3. Giải và biện luận phương trình đẳng cấp. + Dạng toán 3.1 Không có điều kiện của nghiệm. + Dạng toán 3.3 Có điều kiện của nghiệm. + Dạng toán 3.3 Định m để phương trình có nghiệm. Dạng toán 4. Giải và biện luận Phương trình đối xứng. + Dạng toán 4.1 Không có điều kiện của nghiệm. + Dạng toán 4.2 Có điều kiện của nghiệm. Dạng toán 5. Biến đổi đưa về phương trình tích. + Dạng toán 5.1 Không có điều kiện của nghiệm. + Dạng toán 5.2 Có điều kiện của nghiệm. Dạng toán 6. Giải và biện luận phương trình lượng giác chứa ẩn ở mẫu. Dạng toán 7. Giải và biện luận Một số bài toán về phương trình lượng giác khác. Dạng toán 8. Giải và biện luận Phương trình lượng giác chứa tham số.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề công thức lượng giác - Trần Quốc Nghĩa
Tài liệu gồm 131 trang tổng hợp lý thuyết, phân dạng và hướng dẫn giải các bài toán chuyên đề công thức lượng giác kèm 333 bài tập trắc nghiệm có lời giải chi tiết. Phần 1. CÔNG THỨC LƯỢNG GIÁC – Vấn đề 1. GÓC VÀ CUNG LƯỢNG GIÁC + Dạng 1. Mối liên hệ giữa độ và rad + Dạng 2. Các bài toán liên quan đến góc (cung) lượng giác + Dạng 3. Dựng các ngọn cung lượng giác trên đường tròn LG + Dạng 4. Độ dài của một cung tròn + Dạng 5. Tính các giá trị lượng giác của một cung khi biết một giá trị lượng giác của nó + Dạng 6. Rút gọn – Chứng minh + Dạng 7. Các dạng toán khác – Vấn đề 2. CUNG LIÊN KẾT + Dạng 1. Tính các giá trị lượng giác của một cung bằng cách rút về cung phần tư thứ nhất + Dạng 2. Tính giá trị biểu thức lượng giác + Dạng 3. Rút gọn – Chứng minh + Dạng 4. Hệ thức lượng trong tam giác [ads] – Vấn đề 3. CÔNG THỨC CỘNG + Dạng 1. Sử dụng trục tiếp các công thức để tính hay đơn giản biểu thức + Dạng 2. Chứng minh đẳng thức + Dạng 3. Chứng minh một biểu thức không phụ thuộc đối số + Dạng 4. Hệ thức lượng trong tam giác – Vấn đề 4. CÔNG THỨC NHÂN + Dạng 1. Sử dụng trục tiếp các công thức để tính hay đơn giản biểu thức + Dạng 2. Chứng minh đẳng thức + Dạng 3. Chứng minh một biểu thức không phụ thuộc đối số – Vấn đề 5. CÔNG THỨC BIẾN ĐỔI + Dạng 1. Biến đổi các biểu thức thành tổng + Dạng 2. Biến đổi các biểu thức thành tích + Dạng 3. Áp dụng công thức biến đổi để tính hay rút gọn một biểu thức lượng giác + Dạng 4. Chứng minh đẳng thức lượng giác + Dạng 5. Hệ thức lượng trong tam giác Phần 2. CÂU HỎI TRẮC NGHIỆM
Chuyên đề hàm số lượng giác và phương trình lượng giác - Trần Đình Cư
Tài liệu gồm 136 trang với nội dung gồm: Chương I. Hàm số lượng giác và phương trình lượng giác Bài 1. Hàm số lượng giác A. Cơ sở lý thuyết B. Phương pháp giải bài tập + Dạng 1. Tìm tập xác định của hàm số + Dạng 2. Xét tính chẵn lẻ của hàm số + Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác + Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó + Dạng 5. Vẽ đồ thị hàm số lượng giác C. Câu hỏi trắc nghiệm [ads] Bài 2. Phương trình lượng giác cơ bản A. Cơ sở lý thuyết B. Phương pháp giải bài tập C. Câu hỏi trắc nghiệm Bài 3. Phương trình lượng giác thường gặp A. Cơ sở lý thuyết và phương pháp giải bài tập + Dạng 1. Phương trình bậc hai đối với hàm số lượng giác + Dạng 2. Phương trình bậc nhất theo sinx và cosx + Dạng 3. Phương trình thuần nhất bậc hai đối với sinx và cosx + Dạng 4. Phương trình đối xứng B. Câu hỏi trắc nghiệm
Phương trình, hệ phương trình và bất phương trình lượng giác - Võ Anh Khoa, Hoàng Bá Minh
Sách gồm 200 trang với các bài tập phương trình lượng giác, hệ phương trình lượng giác và bất phương trình lượng giác được phân dạng thành: A – Sơ lược về hàm lượng giác ngược 1. Một số tính chất cơ bản về hàm lượng giác ngược 2. Bài tập ví dụ về hàm lượng giác ngược B – Phương trình lượng giác 1. Phương trình lượng giác cơ bản 2. Các dạng phương trình lượng giác đưa về phương trình lượng giác cơ bản a. Phương trình lượng giác bậc hai [ads] b. Phương trình lượng giác bậc nhất theo sinx và cosx c. Phương trình lượng giác đối xứng theo sinx và cosx d. Phương trình lượng giác bậc hai thuần nhất đối sinx và cosx e. Các dạng phương trình lượng giác khác + Phương trình lượng giác chứa căn thức + Phương trình lượng giác không mẫu mực + Phương trình lượng giác có chứa tham số C – Hệ phương trình lượng giác D – Bất phương trình lượng giác Tất cả các bài tập đều được giải chi tiết
Biến đổi lượng giác và hệ thức lượng - Võ Anh Khoa, Hoàng Bá Minh
Cuốn sách Biến đổi lượng giác và hệ thức lượng được biên soạn với mục đích cung cấp, bổ sung kiến thức cho học sinh THPT và một số bạn đọc quan tâm đến mảng kiến thức này trong quá trình học tập và làm việc. Ở cuốn sách này, ngoài việc đưa ra những khái niệm và dạng bài tập cơ bản, chúng tôi sẽ thêm vào đó lịch sử và ứng dụng của môn học này để các bạn hiểu rõ hơn “Nó xuất phát từ đâu và tại sao chúng ta lại phải học nó?”. Ở các chương chính, chúng tôi chia làm 3 phần: [ads] + Phần I: Nêu lý thuyết cùng ví dụ minh họa ngay sau đó, giúp bạn đọc hiểu và biết cách trình bày bài. Đồng thời đưa ra các dạng toán cơ bản, thường gặp trong quá trình làm bài trên lớp của học sinh THPT. Ở phần này, chúng tôi sẽ trình bày một số bài để bạn đọc có thể nắm vững hơn, tránh sai sót. + Phần II: Trong quá trình tham khảo và tổng hợp tài liệu, chúng tôi sẽ đưa vào phần này các dạng toán khó nhằm giúp cho các học sinh bồi dưỡng, rèn luyện kĩ năng giải LƯỢNG GIÁC thành thạo hơn khi gặp phải những dạng toán này. + Phần III: Chúng tôi sẽ đưa ra lời giải gợi ý cho một số bài, qua đó bạn đọc kiểm tra lại đáp số, lời giải hoặc cũng có thể tham khảo thêm.