Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT TP Hồ Chí Minh

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT TP Hồ Chí Minh Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT TP Hồ Chí Minh Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT TP Hồ Chí Minh Chúng tôi xin giới thiệu đến quý thầy cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023-2024 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. Kỳ thi sẽ diễn ra vào ngày 06 tháng 06 năm 2023, đề thi sẽ bao gồm đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023-2024 sở GD&ĐT TP Hồ Chí Minh: - Đề bài 1: Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH. Đường tròn tâm I nội tiếp tam giác ABC, tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi J là giao điểm của AI và DE; K là trung điểm của AB. a) Chứng minh tứ giác BIJD nội tiếp. b) Gọi M là giao điểm của KI và AC, N là giao điểm của AH và ED. c) Gọi Q là giao điểm của DI và EF, P là trung điểm của BC. Chứng minh ba điểm A, P, Q thẳng hàng. - Đề bài 2: Cho đường tròn tâm O nội tiếp hình thoi ABCD. Gọi E, F, G, H là các điểm lần lượt thuộc các cạnh AB, BC, CD, DA sao cho EF, GH cùng tiếp xúc với (O). a) Chứng minh CG·AH = AO². b) Chứng minh EH song song FG. - Đề bài 3: Xét các số nguyên a < b < c thỏa mãn n = a³ + b³ + c³ - 3abc là số nguyên tố. a) Chứng minh: a < 0. b) Tìm tất cả các số nguyên dương a, b, c (a < b < c) sao cho n là ước của 2023. Hãy chuẩn bị kỹ càng và tự tin để tham gia kỳ thi tuyển sinh quan trọng này. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề Toán tuyển sinh vào lớp 10 THPT 2018 - 2019 sở GD và ĐT Bắc Giang
THCS. giới thiệu đến thầy, cô và các em học sinh đề Toán tuyển sinh vào lớp 10 THPT 2018 – 2019 sở GD và ĐT Bắc Giang, đề thi gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 06/06/2018 nhằm giúp đánh giá và phân loại năng lực học sinh, để từ đó các trường THPT tại tỉnh Bắc Giang có cơ sở để tuyển sinh khối lớp 10 chuẩn bị cho năm học mới, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 THPT 2018 - 2019 sở GD và ĐT Bắc Ninh
THCS. giới thiệu đến thầy, cô và các em học sinh đề Toán tuyển sinh lớp 10 THPT 2018 – 2019 sở GD và ĐT Bắc Ninh, đề thi gồm 6 câu hỏi trắc nghiệm khách quan và 4 bài toán tự luận với tỉ lệ điểm số là 3 : 7, kỳ thi nhằm giúp đánh giá và phân loại năng lực học sinh, để từ đó các trường THPT tại tỉnh Bắc Ninh có cơ sở để tuyển sinh khối lớp 10 chuẩn bị cho năm học mới, đề thi có lời giải chi tiết .
Đề tuyển sinh lớp 10 THPT năm 2018 - 2019 sở GD và ĐT Hải Dương
Đề tuyển sinh lớp 10 THPT năm 2018 – 2019 sở GD và ĐT Hải Dương được biên soạn nhằm đánh giá và phân loại học sinh lớp 9 theo năng lực học Toán, để từ đó các trường THPT tại tỉnh Hải Dương có cơ sở tuyển chọn các em vào lớp 10 theo tiêu chí của trường, đề thi có lời giải chi tiết .
Đề tuyển sinh lớp 10 môn Toán năm 2018 - 2019 sở GD và ĐT Tiền Giang
Đề tuyển sinh lớp 10 môn Toán năm 2018 – 2019 sở GD và ĐT Tiền Giang gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi diễn ra vào ngày 05/06/2018, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2018 – 2019 sở Tiền Giang : + Hai bến sông A và B cách nhau 60 km. Một ca nô đi xuôi dòng từ A đến B rồi ngược dòng từ B về A. Thời gian đi xuôi dòng ít hơn thời gian ngược dòng là 20 phút. Tính vận tốc ngược dòng của ca nô, biết vận tốc xuôi dòng lớn hơn vận tốc ngược dòng của ca nô là 6 km/h. [ads] + Một hình trụ có diện tích xung quanh bằng 256 cm2 và bán kính đáy bằng 1/2 đường cao. Tính bán kính đáy và thể tích hình trụ. + Cho phương trình x^2 – 2x – 5 = 0 có hai nghiệm x1, x2. Không giải phương trình, hãy tính giá trị của các biểu thức: B = x1^2 + x2^2, C = x1^5 + x2^5.