Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số bài tập mặt cầu ngoại tiếp hình chóp - Nguyễn Thanh Hậu

Tài liệu gồm 9 trang trình bày 4 phương pháp xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp và bài tập áp dụng có lời giải chi tiết. Bài toán mặt cầu ngoại tiếp hình chóp xuất hiện nhiều trong các đề kiểm tra, các đề thi vào đại học. Qua thực tế giảng dạy chúng tôi thấy rằng: Nhiều học sinh tỏ ra lúng túng khi gặp các bài toán có liên quan đến mặt cầu. Bài viết này cùng trao đổi với các em và bạn đồng nghiệp một vài kỹ thuật giải toán thông qua các ví dụ về mặt cầu ngoại tiếp hình chóp. Các vấn đề thường gặp liên quan đến bài toán mặt cầu ngoại tiếp hình chóp kiểu như: Chứng minh các điểm nào đó cùng nằm trên một mặt cầu? Xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp? Hay tính diện tích mặt cầu ngoại tiếp hình chóp hay thể tích khối cầu ngoại tiếp khối chóp?. [ads] Tóm tắt nội dung tài liệu : I. Cơ sở lí thuyết II. Các phương pháp xác định tâm mặt cầu ngoại tiếp hình chóp Bài toán: Xác định tâm I và tính bán kính R của mặt cầu ngoại tiếp hình chóp SA1A2…An. Phương pháp 1: Gọi I là tâm mặt cầu ngoại tiếp hình chóp SA1A2…An. + Xác định tâm O đường tròn ngoại tiếp đa giác đáy A1A2…An. + Dựng trục Δ của đường tròn ngoại tiếp đa giác đáy A1A2…An (Δ là đường thẳng đi qua tâm O đường tròn ngoại tiếp đa giác đáy và vuông góc với mặt phẳng đáy). + Vẽ mặt phẳng trung trực (P) của một cạnh bên bất kì của hình chóp. + Giả sử I= Δ ∩ (P) khi đó I là tâm mặt cầu ngoại tiếp cần dựng. Phương pháp 2: Gọi I là tâm mặt cầu ngoại tiếp hình chóp SA1A2…An. + Dựng trục Δ1 của đường tròn ngoại tiếp đa giác đáy A1A2…An.(Δ là đường thẳng đi qua tâm O đường tròn ngoại tiếp đa giác đáy và vuông góc với mặt phẳng đáy.) + Dựng trục Δ2 của đường tròn ngoại tiếp tam giác của mặt bên sao cho Δ1 và Δ2 đồng phẳng. + Giả sử I = Δ1 ∩ Δ2, khi đó I là tâm mặt cầu ngoại tiếp. Phương pháp 3: Ta chứng minh các đỉnh của hình chóp cùng nhìn hai đỉnh còn lại của hình chóp dưới một góc vuông hoặc tất cả các đỉnh của hình chóp cùng nhìn hai điểm nào đó dưới một góc vuông. Phương pháp 4: Trong không gian ta dự đoán điểm đặc biệt I nào đó rồi chứng minh I cách đều các đỉnh của hình chóp. III. Cách xác định tâm và tính bán kính mặt cầu ngoại tiếp của một số hình chóp đặc biệt IV. Các ví dụ minh họa

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập khối đa diện và thể tích của chúng - Hoàng Xuân Nhàn
Tài liệu gồm 143 trang, được biên soạn bởi thầy giáo Hoàng Xuân Nhàn, hướng dẫn giải các dạng bài tập khối đa diện và thể tích của chúng, hỗ trợ học sinh khối 12 trong quá trình học tập chương trình Hình học 12 chương 1 và ôn thi tốt nghiệp THPT môn Toán. Mục lục các dạng bài tập khối đa diện và thể tích của chúng – Hoàng Xuân Nhàn: Bài 1&2 . Đa diện, đa diện lồi, đa diện đều (Trang 1). Dạng 1. Nhận diện hình (khối) đa diện, đa diện lồi (Trang 3). Dạng 2. Tìm số đỉnh, số cạnh, số mặt của một hình đa diện (Trang 5). Dạng 3. Tâm đối xứng, trục đối xứng, mặt đối xứng, lắp ghép đa diện (Trang 6). Bài tập trắc nghiệm (Trang 9). Đáp bán bài tập trắc nghiệm (Trang 14). Bài 3 . Thể tích khối đa diện (Trang 15). Dạng 1. Tìm thể tích khối chóp (Trang 20). + Bài toán 1. Tìm thể tích khối chóp bằng các phép tính đơn giản (Trang 21). + Bài toán 2. Tìm thể tích khối chóp thông qua góc (Trang 24). + Bài toán 3. Tỉ số thể tích khối chóp (Trang 31). Dạng 2. Thể tích khối lăng trụ (Trang 38). + Bài toán 1. Tìm thể tích khối lăng trụ bằng phép tính đơn giản (Trang 38). + Bài toán 2. Tìm thể tích khối lăng trụ thông qua góc (Trang 41). + Bài toán 3. Tỉ số thể tích khối lăng trụ (Trang 46). + Bài toán 4. Lăng trụ ẩn (Trang 51). Dạng 3. GTLN – GTNN (max – min) thể tích (Trang 53). + Bài toán 1. Điều kiện về cạnh trong hình chóp (Trang 54). + Bài toán 2. Điều kiện về cạnh trong lăng trụ (Trang 57). + Bài toán 3. Điều kiện về góc (Trang 59). + Bài toán 4. Bài toán tối ưu (Trang 62). Bài tập trắc nghiệm (Trang 66). Đáp án bài tập trắc nghiệm (Trang 101). Bài 4 . Khoảng cách trong không gian (Trang 102). Dạng 1. Khoảng cách điểm đến mặt phẳng (Trang 102). + Bài toán 1. Sử dụng công thức thể tích để tìm khoảng cách (Trang 103). + Bài toán 2. Khoảng cách từ điểm đến mặt phẳng chứa đường cao hình chóp (Trang 105). + Bài toán 3. Khoảng cách từ chân đường cao của hình chóp đến mặt bên (Trang 107). + Bài toán 4. Khoảng cách từ một điểm bất kỳ đến mặt bên của hình chóp (Trang 111). Dạng 2. Khoảng cách giữa hai đường thẳng chéo nhau (Trang 115). Dạng 3. Cac khoảng cách đối với lăng trụ (Trang 120). Dạng 4. Thể tích khối đa diện liên quan khoảng cách (Trang 125). Bài tập trắc nghiệm (Trang 129). Đáp án bài tập trắc nghiệm (Trang 141). Ngoài bản file PDF, thầy Hoàng Xuân Nhàn còn chia sẻ bản file WORD (.docx) nhằm hỗ trợ quý thầy, cô giáo trong việc biên soạn tài liệu học tập và giảng dạy.
Tuyển tập 181 bài tập tỷ số thể tích có đáp án và lời giải
Tài liệu gồm 134 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Toán, tuyển tập 181 bài tập tỷ số thể tích có đáp án và lời giải chi tiết, với đầy đủ các mức độ nhận thức: nhận biết, thông hiểu, vận dụng và vận dụng cao. Mục lục tài liệu tuyển tập 181 bài tập tỷ số thể tích có đáp án và lời giải: Phần 1. Khối chóp – mức 1: nhận biết (NB) (Trang 1). Phần 2. Khối lăng trụ – mức 1: nhận biết (NB) (Trang 5). Phần 3. Khối chóp – mức 2: thông hiểu (TH) (Trang 6). Phần 4. Khối lăng trụ – mức 2: thông hiểu (TH) (Trang 24). Phần 5. Khối chóp – mức 3: vận dụng (VD) (Trang 35). Phần 6. Khối lăng trụ – mức 3: vận dụng (VD) (Trang 58). Phần 7. Khối chóp – mức 4: vận dụng cao (VDC) (Trang 77). Phần 8. Khối lăng trụ – mức 4: vận dụng cao (VDC) (Trang 122). Xem thêm : + Bài toán VD – VDC tỉ số thể tích – Nguyễn Công Định + Bài tập tỉ số thể tích khối đa diện có lời giải chi tiết
Các dạng bài tập VDC khối đa diện và thể tích của chúng
Tài liệu gồm 103 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) khối đa diện và thể tích của chúng, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 1 và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC khối đa diện và thể tích của chúng: CHỦ ĐỀ 1 . KHÁI NIỆM VỀ KHỐI ĐA DIỆN. Dạng 1. Điều kiện để một hình là hình đa diện – khối đa diện. Dạng 2. Xác định số đỉnh, cạnh, mặt của một khối đa diện. Dạng 3. Phân chia, lắp ghép các khối đa diện. Dạng 4. Phép biến hình trong không gian. CHỦ ĐỀ 2 . KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU. Dạng 1. Nhận diện đa diện lồi, đa diện đều. Dạng 2. Các đặc điểm của khối đa diện đều. CHỦ ĐỀ 3 . THỂ TÍCH CỦA KHỐI ĐA DIỆN. Dạng 1. Thể tích khối chóp có cạnh bên vuông góc với đáy. Dạng 2. Thể tích khối chóp có mặt bên vuông góc với đáy. Dạng 3. Thể tích khối chóp đều. Dạng 4. Thể tích khối chóp biết trước một đường thẳng vuông góc với đáy. Dạng 5. Thể tích khối chóp có các cạnh bên bằng nhau hoặc các cạnh bên, mặt bên cùng tạo với đáy những góc bằng nhau. Dạng 6. Thể tích lăng trụ đứng. Dạng 7. Thể tích lăng trụ xiên. Dạng 8. Thể tích hình hộp. Dạng 9. Tỉ số thể tích khối chóp. Dạng 10. Tỉ số thể tích khối lăng trụ. Dạng 11. Tỉ số thể tích khối hộp. Dạng 12. Tách hình để tính thể tích. Dạng 13. Phục hình và trải phẳng. Dạng 14. Bài toán cực trị liên quan đến thể tích khối đa diện. Dạng 15. Sử dụng thể tích để tính khoảng cách.
Các dạng bài tập VDC thể tích của khối đa diện
Tài liệu gồm 79 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) thể tích của khối đa diện, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC thể tích của khối đa diện: A. LÍ THUYẾT Công thức tính thể tích khối chóp, lăng trụ. Các công thức hình phẳng cần nắm. Nhắc lại cách xác định các góc trong không gian. B. CÁC DẠNG BÀI TẬP Dạng 1. Thể tích khối chóp có cạnh bên vuông góc với đáy. Dạng 2. Thể tích khối chóp có mặt bên vuông góc với đáy. Dạng 3. Thể tích khối chóp đều. Dạng 4. Thể tích khối chóp biết trước một đường thẳng vuông góc với đáy. Dạng 5. Thể tích khối chóp có các cạnh bên bằng nhau hoặc các cạnh bên, mặt bên cùng tạo với đáy những góc bằng nhau. Dạng 6. Thể tích lăng trụ đứng. Dạng 7. Thể tích lăng trụ xiên. Dạng 8. Thể tích hình hộp. Dạng 9. Tỉ số thể tích khối chóp. Dạng 10. Tỉ số thể tích khối lăng trụ. Dạng 11. Tỉ số thể tích khối hộp. Dạng 12. Tách hình để tính thể tích. Dạng 13. Phục hình và trải phẳng. Dạng 14. Bài toán cực trị liên quan đến thể tích khối đa diện. Dạng 15. Sử dụng thể tích để tính khoảng cách.