Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT thành phố Vinh Nghệ An

Nội dung Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT thành phố Vinh Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2022-2023 phòng GD&ĐT thành phố Vinh, Nghệ An Đề thi thử Toán vào năm 2022-2023 phòng GD&ĐT thành phố Vinh, Nghệ An Xin chào quý thầy cô và các em học sinh lớp 9! Để giúp các em chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10 THPT, Sytu xin giới thiệu đến mọi người đề thi thử môn Toán được tổ chức bởi phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An. Đề thi bao gồm đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Dưới đây là một số câu hỏi trích dẫn từ đề thi: 1. An đo diện tích bể bơi hình chữ nhật bằng cách đi sát mép bể bơi. An đã thực hiện 140 bước đi, số bước đi hết cạnh thứ hai nhiều hơn cạnh thứ nhất 30 bước. Biết mỗi bước của An bằng 0,5m. Hãy tính diện tích bể bơi mà An đã đo được. 2. Cho đường tròn (O) và điểm F nằm ngoài đường tròn. Trong đó, FE cắt AO tại I. Vẽ đường thẳng song song với AE cắt AF tại K, cắt BE tại G. Hãy chứng minh các phát biểu liên quan đến tứ giác AOBF, I trung điểm của KG và PM vuông góc với NB. 3. Giả sử phương trình \(2x^2 - 2x + 1 = 0\) có hai nghiệm là \(x_1\) và \(x_2\). Hãy lập phương trình bậc 2 ẩn y với nghiệm là \(x_1\) và \(x_2\). Chúc quý thầy cô và các em học sinh có kỳ thi thật tốt!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán năm học 2020 2021 sở GD ĐT Nghệ An
Nội dung Đề tuyển sinh môn Toán năm học 2020 2021 sở GD ĐT Nghệ An Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán lớp 10 năm học 2020 - 2021 sở GD&ĐT Nghệ An Đề thi tuyển sinh môn Toán lớp 10 năm học 2020 - 2021 sở GD&ĐT Nghệ An Đề thi tuyển sinh môn Toán lớp 10 năm học 2020 - 2021 của sở GD&ĐT Nghệ An bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi cho học sinh là 120 phút. Dưới đây là một số câu hỏi trích dẫn từ đề tuyển sinh môn Toán lớp 10 năm học 2020 - 2021 sở GD&ĐT Nghệ An: Cho phương trình \(x^2 - 4x - 3 = 0\) có hai nghiệm phân biệt \(x_1, x_2\). Không giải phương trình, hãy tính giá trị của biểu thức \(T = \frac{x_1^2}{x_2} + \frac{x_2^2}{x_1}\). Trong tháng hai năm 2020, hai lớp 9A và 9B của một trường THCS đã sản xuất 250 chai nước rửa tay sát khuẩn. Tính tổng số chai nước rửa tay sát khuẩn mà mỗi lớp đã sản xuất trong tháng hai nếu tổng sản phẩm của cả hai lớp vượt mức 22% so với tháng hai. Cho tứ giác \(ABCD\) nội tiếp đường tròn tâm \(O\) đường kính \(AB\). Chứng minh rằng tứ giác \(ADEH\) là tứ giác nội tiếp và thực hiện các phần bài tập khác liên quan đến tứ giác \(ABCD\). Đề tuyển sinh môn Toán lớp 10 năm học 2020 - 2021 sở GD&ĐT Nghệ An đưa ra các bài toán đa dạng, giúp học sinh rèn luyện khả năng tư duy logic và giải quyết vấn đề. Hy vọng rằng các em sẽ tự tin và thành công khi tham gia kỳ thi tuyển sinh.
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bến Tre (chung)
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bến Tre (chung) Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bến Tre (chung) Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bến Tre (chung) Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bến Tre (chung) được áp dụng cho tất cả các thí sinh dự thi vào các lớp 10 Trung học Phổ thông Công lập. Bài thi bao gồm 08 bài toán dạng tự luận, thời gian làm bài là 120 phút. Trích đoạn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bến Tre (chung): + Khi nào thì đồ thị của hai hàm số y = x + (5 + m) và y = 2x + (7 - m) cắt nhau tại một điểm nằm trên trục hoành? + Trong tam giác ABC vuông tại B với đường cao BH (H thuộc AC), đã biết AB = 6 cm, AC = 10 cm. Hãy tính độ dài các đoạn thẳng BC và BH. + Trên đường tròn (O) lấy hai điểm A, B sao cho AOB = 65° và điểm C như hình vẽ. Tính số đo AmB, ACB và số đo ACB.
Đề tuyển sinh môn Toán năm 2020 2021 trường ĐHSP TP HCM (chung)
Nội dung Đề tuyển sinh môn Toán năm 2020 2021 trường ĐHSP TP HCM (chung) Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020 - 2021 trường ĐHSP TP HCM (chung) Đề tuyển sinh môn Toán năm 2020 - 2021 trường ĐHSP TP HCM (chung) Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường ĐHSP - TP HCM (chung) là đề thi đặc biệt dành cho tất cả các thí sinh muốn thi vào các lớp chuyên Toán, Văn và Tiếng Anh. Kỳ thi dự kiến diễn ra vào ngày ... tháng 07 năm 2020. Một trong những câu hỏi trong đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường ĐHSP - TP HCM (chung) đề cập đến một lớp chuyên Anh của trường Trung học Thực hành. Trong đó, có bốn tổ học sinh với số học sinh trong mỗi tổ bằng nhau. Sau một bài kiểm tra Anh văn, một số bạn được điểm 8 và các bạn còn lại được điểm 9. Tổng số điểm của tất cả các bạn trong lớp là 336 điểm. Vấn đề đặt ra là cần tìm số học sinh trong lớp và số bạn được điểm 9 trong bài kiểm tra Anh văn. Ngoài ra, đề tuyển sinh còn đưa ra một bài toán liên quan đến việc cắt và gấp tấm tôn hình vuông để tạo thành một cái hộp không nắp. Đề bài yêu cầu tìm diện tích tấm tôn ban đầu, biết rằng hộp có thể tích là 128 cm. Đề thi cũng liên quan đến các khái niệm trong hình học như tam giác, đường tròn. Vấn đề được đặt ra là cần chứng minh rằng ba điểm B, M, E thẳng hàng trong một tam giác vuông cân. Đề tuyển sinh môn Toán năm 2020 - 2021 trường ĐHSP TP HCM mang đến cho các thí sinh những bài toán thú vị, phù hợp với trình độ học sinh và đòi hỏi sự tư duy logic, khả năng giải quyết vấn đề và kỹ năng tính toán chính xác.
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Định
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GDĐT Bình Định Đề thi tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GDĐT Bình Định Đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2020-2021 sở GD&ĐT Bình Định đã được công bố, nhằm chọn lọc những học sinh có khả năng xuất sắc trong lĩnh vực Toán học. Kỳ thi sẽ diễn ra vào ngày thứ Bảy, 18 tháng 07 năm 2020. Trích dẫn một số câu hỏi trong đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020-2021 sở GD&ĐT Bình Định: Tìm các số nguyên tố p và q sao cho p3 + 3pq + q3 là một số chính phương. Chứng minh rằng đối với tam giác ABC cân tại A (với BAC < 60◦) nội tiếp đường tròn (O), ta có MA > MB + MC khi M là một điểm bất kì trên cung nhỏ BC. Đưa ra các chứng minh liên quan đến tứ giác AMDN, giao điểm của AB và ED, trung điểm của KL và tâm đường tròn ngoại tiếp tam giác AEF. Chứng minh rằng HI vuông góc với EF. Đề thi không chỉ đánh giá kiến thức Toán học của thí sinh mà còn đòi hỏi khả năng tư duy logic, suy luận và giải quyết vấn đề. Hy vọng rằng các thí sinh sẽ hoàn thành kỳ thi một cách xuất sắc và thành công.