Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số bài toán trong tích phân có vận dụng phương trình hàm

Tài liệu gồm 24 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Chi (trường THPT Kinh Môn, tỉnh Hải Dương), hướng dẫn giải một số bài toán trong tích phân có vận dụng phương trình hàm. Trong chương trình SGK Giải tích 12, các dạng tích phân được tính bằng các tính chất của tích phân và tính chất của hàm số hay tích phân thông qua giả thiết là các dạng phương trình hàm xuất hiện rất ít, chính vì vậy khả năng thực hành tính toán của học sinh còn nhiều hạn chế hay chưa nói đến là gặp rất nhiều khó khăn. Trước đây, trong các kì thi từ thi tốt nghiệp THPT đến các kỳ thi Đại học, Cao đẳng hay ngay trong quá trình dạy hầu như không xuất hiện các dạng tích phân cho dưới dạng phương trình hàm, vì vậy sự quan tâm của giáo viên và học sinh về vấn đề này là không có. Từ khi Bộ GD&ĐT chuyển hình thức thi môn Toán từ thi tự luận sang thi trắc nghiệm thì dạng tích phân này đã có trong đề thi đã xuất hiện và khi dạy học vấn đề này cũng được các thầy cô và các em học sinh quan tâm hơn. Từ những lý do trên tôi đã mạnh dạn viết bài nhỏ này để nói về một số bài toán tích phân có sử dụng phương trình hàm và cách giải của chúng với mục tiêu dẫn dắt học sinh biết vận dụng những kiến thức cơ bản, kết hợp các phương pháp được tiếp cận từ sách giáo khoa để tạo được một thói quen mới, một phương pháp mới cho dạng toán Tích phân.

Nguồn: toanmath.com

Đọc Sách

Nguyên hàm, tích phân chống casio - phân thức và đổi biến - Mẫn Ngọc Quang
Tài liệu gồm 24 trang, trình bày một số dạng toán nguyên hàm, tích phân mà máy tính Casio khó can thiệp vào cách giải. Tài liệu trình bày 4 dạng toán: + Dạng 1: Đồng nhất hệ số – mẫu có dạng tích + Dạng 2: Nhảy lầu + Dạng 3: Mẫu số có chứa biểu thức bình phương + Dạng 4: Bậc tử số lớn hơn mẫu [ads]
Chinh phục nguyên hàm - tích phân từ A đến Z - Nguyễn Hữu Bắc
Sách gồm 480 trang trình bày chi tiết hầu hết những dạng toán nguyên hàm – tích phân thường gặp trong chương trình Toán 12. Nội dung sách : Chương mở đầu + Mối liên hệ giữa nguyên hàm và tích phân + Ý nghĩa A. Lý thuyết Chương I. Nguyên hàm I. Khái niệm nguyên hàm II. Tính chất nguyên hàm Chương II. Tích phân I. Khái niệm về tích phân II. Tính chất của tích phân III. Các phương pháp tính nguyên hàm – tích phân thường gặp Chương III. Bảng nguyên hàm các hàm số cơ bản Chương IV. Cách tạo dạng tích phân B. Phương pháp tìm nguyên hàm – tích phân Chương I. Phương pháp vi phân Chương II. Phương pháp bảng nguyên hàm Chương III. Phương pháp đổi biến số I. Phương pháp II. Đổi biến số hàm vô tỷ III. Đổi biến hàm đa thức bậc cao IV. Đổi biến hàm lượng giác V. Hàm dưới dấu tích phân chứa các biểu thức bậc nhất của sinx, cosx VI. Đổi biến dựa vào cận Chương IV. Phương pháp tích phân từng phần I. Kỹ thuật chọn hệ số C II. Kỹ thuật tính nhanh III. Phân dạng – phương pháp [ads] C. Nguyên hàm – Tích phân các loại hàm số Chương I. Nguyên hàm – tích phân các hàm đa thức I. Hàm số tìm nguyên hàm II. Phương pháp III. Bài tập vận dụng Chương II. Tích phân hàm hữu tỉ I. Hàm số tìm nguyên hàm II. Phương pháp III. Kỹ thuật nhẩm hệ số trong đồng nhất thức IV. Nguyên tắc giải V. Bài tập áp dụng Chương III. Tích phân hàm vô tỉ Chương IV. Tích phân hàm lượng giác I. Hàm số tìm nguyên hàm II. Phương pháp III. Các công thức lượng giác thường sử dụng IV. Các dạng nguyên hàm lượng giác thường gặp Chương V. Tích phân hàm số mũ – logarit Chương VI. Tích phân hàm trị tuyệt đối Chương VII. Tích phân liên kết Chương VIII. Tích phân trong đề thi đại học từ 2002 đến 2015 Chương IX. Tích phân trong các đề thi thử đại học Chương X. Những bài toán tích phân khó D. Ứng dụng tích phân Chương I. Ứng dụng tích phân để tính diện tích I. Diện tích hình phẳng giới hạn bởi các đường cong II. Diện tích hình tròn III. Diện tích hình Elip Chương II. Ứng dụng tích phân để tính thể tích I. Thể tích V sinh bởi diện tích S (tạo bởi một đường cong với trục) II. Thể tích V sinh bởi diện tích S (tạo bởi từ hai đường cong) Chương III. Sai lầm khi tính tích phân
321 bài toán trắc nghiệm nguyên hàm, tích phân - Nguyễn Tiến Chinh
Tài liệu gồm 36 trang với 321 bài toán trắc nghiệm thuộc chuyên đề nguyên hàm, tích phân do thầy Nguyễn Tiến Chinh biên soạn.
8 kỹ thuật đạt điểm tối đa nguyên hàm - tích phân - Nguyễn Tiến Đạt
Nguyên hàm – tích phân là một mảng rất rộng và bao hàm nhiều dạng bài và phương pháp xử lý khác nhau. Đặc biệt khi lên đại học, những nghành liên quan đến kỹ thuật, chúng ta sẽ tiếp cận Nguyên Hàm – Tích Phân ở mức độ cao hơn. Tuy nhiên trong khuôn khổ kỳ thi THPT Quốc gia 2017, thầy đã chắt lọc cho các em trong cuốn sách này: + Đầy đủ những phương pháp chắc chắn có trong đề thi, bám sát cấu trúc đề của Bộ Giáo Dục + Nhiều ví dụ đa dạng và giải chi tiết theo hướng Step by Step (từng bước), dù là học sinh mất gốc vẫn có thể sử dụng cuốn sách này + Đề trắc nghiệm theo mọi hướng để các em tiếp cận được rộng nhất + Kết hợp các phương pháp sử dụng máy tính Casio, Vinacal Thầy tự tin khẳng định rằng, khi các em sử dụng thành thạo 8 kỹ thuật trong cuốn sách này, việc đạt điểm tối đa chuyên đề Nguyên Hàm – Tích Phân là cực kỳ đơn giản! [ads] Nội dung tài liệu : Nguyên hàm A. Định nghĩa và tính chất B. Bảng các nguyên hàm, đạo hàm cơ bản Trắc nghiệm lý thuyết nguyên hàm Đáp án trắc nghiệm lý thuyết nguyên hàm Kỹ thuật 1. Sử dung bảng nguyên hàm cơ bản Kỹ thuật 2. Tính nguyên hàm của hàm số hữu tỷ Kỹ thuật 3. Đổi biến dạng 1 Tích phân Trắc nghiệm lý thuyết tích phân Đáp án trắc nghiệm lý thuyết tích phân Kỹ thuật 4. Tích phân lượng giác 1. Công thức lượng giác thường sử dụng Dạng 4.1. Sử dụng công thức nguyên hàm cơ bản Dạng 4.2. Dùng công thức hạ bậc Dạng 4.3. Dùng công thức biến đổi tích thành tổng Dạng 4.4. Đổi biến số Dạng 4.4.1. Kết hợp 1 trong 4 dạng a, b, c, d với d(sinx) = cosx, d(cosx) = -sinx Dạng 4.4.2. Kết hợp 1 trong 4 dạng a, b, c, d và d((sinx)^2) = sin2xdx, d((cosx)^2) = -2sin2xdx Dạng 4.4.3 kết hợp 1 trong 4 dạng a, b, c, d và d(tanx) = 1/(cosx)^2.dx = (1 + (tanx)^2)dx; d(cotx) = -1/(sinx)^2.dx = -(1 + (cotx)^2)dx Dạng 4.4.4. Kết hợp 1 trong 4 dạng a, b, c, d và d(sinx ± cosx) = (cosx ± sinx)dx Kỹ thuật 5. Đổi biến số dạng 2 Kỹ thuật 6. Tích phân từng phần Kỹ thuật 7. Tích phân chứa giá trị tuyệt đối Ứng dụng tích phân 1. Tính diện tích hình phẳng 1.1. Diện tích hình thang cong 1.2. Diện tích hình phẳng 2. Tính thể tích khối tròn xoay 3. Bài toán chuyển động Kỹ thuật 8. Sử dụng máy tính Casio – Vinacal trong giải toán nguyên hàm – tích phân Dạng 1. Tìm nguyên hàm F(x) của hàm số f(x) Dạng 2. Tìm nguyên hàm F(x) của hàm số f(x) khi biết F(x0) = M Dạng 3. Tính tích phân Dạng 4. Tìm a, b sao cho tích phân của hàm số f(x) trên đoạn [a; b] có giá trị bằng A Dạng 5. Tính diện tích, thể tích Dạng 6. Mối liên hệ giữa A, B, C Phụ lục A. Đề tổng hợp nguyên hàm – tích phân và đáp án B. Tích phân trong đề thi đại học 10 năm gần đây