Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập đề thi vào lớp 10 môn Toán sở GDĐT thành phố Hà Nội (1988 - 2023)

Tài liệu gồm 89 trang, được tổng hợp bởi thầy giáo Bùi Quốc Hoàn, tuyển tập đề thi chính thức tuyển sinh vào lớp 10 (hệ phổ thông và hệ chuyên) môn Toán sở Giáo dục và Đào tạo thành phố Hà Nội (giai đoạn từ năm 1988 đến năm 2023). Mở đầu : Kính chào các thầy giáo, cô giáo và các bạn học sinh. Trên tay các thầy giáo, cô giáo và các bạn học sinh đang là tuyển tập các đề thi vào 10 hệ phổ thông và hệ chuyên của thành phố Hà Nội từ năm học 1988 – 1989 đến năm học 2022 – 2023 được soạn thảo theo chuẩn LATEX. Tài liệu được soạn thảo với sự hỗ trợ của nhóm Toán và LATEX. Đặc biệt với cấu trúc gói đề thi ex_test của tác giả Trần Anh Tuấn, Đại học Thương Mại. Quá trình biên tập dựa trên đề thi các thầy giáo, cô giáo chia sẻ trên mạng không tránh được sơ xuất do tài liệu gốc không rõ. Rất mong thầy giáo, cô giáo thông cảm. Để tài liệu hoàn thiện và đầy đủ hơn thầy giáo, cô giáo có đề trong tài liệu còn thiếu hoặc sai sót mong thầy giáo, cô giáo gửi về Emai: [email protected]. Trân trọng cảm ơn. Hà Nội, ngày 19 tháng 06 năm 2022 Tác giả. Bùi Quốc Hoàn. Mục lục : 1 ĐỀ THI VÀO HỆ PHỔ THÔNG 4. 1 Sở Giáo dục và Đào tạo Hà Nội năm học 1988 – 1989 5. 2 Sở Giáo dục và Đào tạo Hà Nội năm học 1989 – 1990 6. 3 Sở Giáo dục và Đào tạo Hà Nội năm học 1990 – 1991 7. 4 Sở Giáo dục và Đào tạo Hà Nội năm học 1991 – 1992 8. 5 Sở Giáo dục và Đào tạo Hà Nội năm học 1992 – 1993 9. 6 Sở Giáo dục và Đào tạo Hà Nội năm học 1993 – 1994 10. 7 Sở Giáo dục và Đào tạo Hà Nội năm học 1994 – 1995 11. 8 Sở Giáo dục và Đào tạo Hà Nội năm học 1995 – 1996 12. 9 Sở Giáo dục và Đào tạo Hà Nội năm học 1995 – 1996 13. 10 Sở Giáo dục và Đào tạo Hà Nội năm học 1996 – 1997 14. 11 Sở Giáo dục và Đào tạo Hà Nội năm học 1996 – 1997 15. 12 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 16. 13 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 17. 14 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 18. 15 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 19. 16 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 20. 17 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 21. 18 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 22. 19 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 23. 20 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 24. 21 Sở Giáo dục và Đào tạo Hà Nội năm học 2006 – 2007 25. 22 Sở Giáo dục và Đào tạo Hà Nội năm học 2007 – 2008 26. 23 Sở Giáo dục và Đào tạo Hà Nội năm học 2008 – 2009 27. 24 Sở Giáo dục và Đào tạo Hà Nội năm học 2009 – 2010 28. 25 Sở Giáo dục và Đào tạo Hà Nội năm học 2010 – 2011 29. 26 Sở Giáo dục và Đào tạo Hà Nội năm học 2011 – 2012 30. 27 Sở Giáo dục và Đào tạo Hà Nội năm học 2012 – 2013 31. 28 Sở Giáo dục và Đào tạo Hà Nội năm học 2013 – 2014 32. 29 Sở Giáo dục và Đào tạo Hà Nội năm học 2014 – 2015 33. 30 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 34. 31 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 35. 32 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 36. 33 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 37. 34 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 38. 35 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 39. 36 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 40. 37 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 41. 2 ĐỀ THI VÀO HỆ CHUYÊN 42. 1 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 43. 2 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 44. 3 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 45. 4 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 46. 5 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 47. 6 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 48. 7 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 49. 8 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 50. 9 Sở Giáo dục và Đào tạo Hà Nội năm học 2001 – 2002 51. 10 Sở Giáo dục và Đào tạo Hà Nội năm học 2001 – 2002 52. 11 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 53. 12 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 54. 13 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 55. 14 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 56. 15 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 57. 16 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 58. 17 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 59. 18 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 60. 19 Sở Giáo dục và Đào tạo Hà Nội năm học 2006 – 2007 61. 20 Sở Giáo dục và Đào tạo Hà Nội năm học 2007 – 2008 62. 21 Sở Giáo dục và Đào tạo Hà Nội năm học 2008 – 2009 63. 22 Sở Giáo dục và Đào tạo Hà Nội năm học 2009 – 2010 64. 23 Sở Giáo dục và Đào tạo Hà Nội năm học 2010 – 2011 65. 24 Sở Giáo dục và Đào tạo Hà Nội năm học 2011 – 2012 66. 25 Sở Giáo dục và Đào tạo Hà Nội năm học 2012 – 2013 67. 26 Sở Giáo dục và Đào tạo Hà Nội năm học 2013 – 2014 68. 27 Sở Giáo dục và Đào tạo Hà Nội năm học 2014 – 2015 69. 28 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 70. 29 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 71. 30 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 72. 31 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 73. 32 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 74. 33 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 75. 34 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 76. 35 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 77. 36 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 78. 37 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 79. 38 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 80. 39 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 81. 40 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 82. 41 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 83. 42 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 84. 43 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 85. 44 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 86.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THPT Đào Duy Từ Thanh Hóa
Nội dung Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THPT Đào Duy Từ Thanh Hóa Bản PDF - Nội dung bài viết Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THPT Đào Duy Từ Thanh Hóa Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THPT Đào Duy Từ Thanh Hóa Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT Đào Duy Từ – Thanh Hóa bao gồm 5 bài toán tự luận, với lời giải chi tiết để học sinh tham khảo và ôn tập. Một số bài toán trong đề bao gồm: Cho đoạn thẳng AB và C là một điểm nằm giữa A và B. Trên cùng một nửa mặt phẳng bờ AB vẽ hai tia Ax By vuông góc với AB. Trên tia Ax lấy một điểm I (I khác A), đường thẳng vuông góc với tia CI tại C cắt tia By tại K. Đường tròn đường kính IC cắt IK tại điểm thứ hai P. Yêu cầu: chứng minh bốn điểm C, P, K, B cùng thuộc một đường tròn, chứng minh AI.BK = AC.BC và xác định vị trí điểm C trên đoạn thẳng AB sao cho diện tích hình thang vuông ABKI là lớn nhất. Giải phương trình (a – 1)x^2 – 4x + 3 = 0 trong các trường hợp a = 1 và a = 2 để tìm nghiệm của phương trình. Đây là một đề thi thử có tính logic cao, giúp học sinh rèn luyện kỹ năng giải các bài toán khó, từ đó chuẩn bị tốt cho kỳ thi sắp tới. Hãy cùng học sinh tham gia vào việc ôn tập và giải đề thi này để nâng cao kiến thức và kỹ năng toán học của mình!
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 1)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 1) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội Đề thi tuyển sinh lớp 10 THPT năm học 2017-2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 1) gồm 5 bài toán tự luận, có lời giải chi tiết. Trong đề thi, có những bài toán như sau: 1. Anh Nam đi xe đạp từ điểm A đến điểm C. Trên đoạn đường AB ban đầu (với B nằm giữa A và C), anh Nam đi với vận tốc không đổi a (km/h) và mất 1,5 giờ để đi từ A đến B. Trên đoạn đường BC, anh Nam đi chậm dần đều với vận tốc tại thời điểm t (tính bằng giờ) kể từ B là v = -8t + a (km/h). Tính quãng đường AB biết rằng đến C xe dừng hẳn và quãng đường BC dài 16km. 2. Cho đường tròn (O) bán kính R ngoại tiếp tam giác ABC có ba góc nhọn. Các tiếp tuyến của đường tròn (O) tại các điểm B, C cắt nhau tại điểm P. Gọi D, E là chân đường vuông góc kẻ từ P xuống AB và AC; M là trung điểm của BC. Phần sau của bài toán yêu cầu chứng minh góc MEP bằng góc MDP, chứng minh đường thẳng DE đi qua một điểm cố định và tính diện tích tam giác ADE khi tam giác ABC đều. Đề thi này mang tính chất thách thức và đòi hỏi sự đắn đo và khéo léo trong việc suy luận và giải quyết vấn đề.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Phú Thọ
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Phú Thọ Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Phú Thọ Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Phú Thọ Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Phú Thọ là một bộ đề gồm 5 bài toán tự luận, được cung cấp lời giải chi tiết cho từng bài toán. Đây là một trong những đề thi quan trọng để học sinh thử sức và chuẩn bị cho kỳ thi tuyển sinh vào lớp 10. Trong đề thi, có các bài toán đa dạng về nội dung và độ khó, đòi hỏi học sinh phải từng bước suy luận logic để tìm ra câu trả lời chính xác. Ví dụ như bài toán về tứ giác nội tiếp đường tròn có giao điểm I, các bước chứng minh và đồng dạng tam giác, hoặc bài toán về parabol và phương trình đường thẳng đi qua hai điểm trên parabol. Đề thi không chỉ giúp học sinh rèn luyện kỹ năng giải toán mà còn giúp học sinh phát triển tư duy logic, sự sáng tạo và khả năng làm việc độc lập. Việc luyện giải các đề thi thực tế như vậy giúp học sinh tự tin hơn khi đối diện với kỳ thi chính thức.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Ninh Bình
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT Ninh Bình năm học 2017-2018 môn Toán Đề thi tuyển sinh THPT Ninh Bình năm học 2017-2018 môn Toán Đề thi tuyển sinh lớp 10 THPT năm học 2017-2018 môn Toán của Sở Giáo dục và Đào tạo Ninh Bình bao gồm 5 bài toán tự luận, với lời giải chi tiết. Một trong những bài toán trong đề thi là: + Một ô tô dự định đi từ bến xe A đến bến xe B cách nhau 90 km với vận tốc không đổi. Tuy nhiên, ô tô khởi hành muộn 12 phút so với dự định. Để đến bến xe B đúng giờ, ô tô đã tăng vận tốc lên 5 km/h so với vận tốc dự định. Hãy tìm vận tốc dự định của ô tô. Bên cạnh đó, còn có bài toán khác đề cập đến đường tròn, với các yêu cầu sau: + Chứng minh tứ giác AOBC nội tiếp + Chứng minh CH.CO = CM.CN + Chứng minh 2 góc POE và OFQ bằng nhau + Chứng minh: PE + QF >= PQ Đề thi này đòi hỏi học sinh có kiến thức vững chắc về các khái niệm cơ bản trong toán học để giải quyết các bài toán phức tạp. Hy vọng rằng đề thi sẽ giúp các thí sinh rèn luyện và nâng cao kiến thức, kỹ năng trong môn Toán. Hãy cố gắng học tập và làm bài thi tốt, chúc các em thành công!