Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi khảo sát Toán 12 lần 2 năm 2019 trường Nguyễn Đức Cảnh - Thái Bình

Đề thi khảo sát Toán 12 lần 2 năm 2019 trường THPT Nguyễn Đức Cảnh – Thái Bình được biên soạn nhằm kiểm tra chất lượng giữa học kỳ 2 Toán 12, đồng thời kiểm tra chất lượng ôn tập thi Trung học Phổ thông Quốc gia môn Toán của học sinh trong năm học 2018 – 2019. Đề thi khảo sát Toán 12 lần 2 năm 2019 trường THPT Nguyễn Đức Cảnh – Thái Bình có mã đề 001, đề gồm 50 câu trắc nghiệm, học sinh làm bài thi Toán trong 90 phút, đề thi có đáp án (đáp án được gạch chân ở phần đề thứ hai). Trích dẫn đề thi khảo sát Toán 12 lần 2 năm 2019 trường Nguyễn Đức Cảnh – Thái Bình : + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy, SA = a. Tập hợp những điểm M trong không gian sao cho SM tạo với (ABC) góc 45 độ là? A. Mặt nón dỉnh S có góc ở đỉnh bằng 45 độ. B. Mặt nón đỉnh S, có một đường sinh là SB. C. Mặt nón đỉnh đỉnh A có một đường sinh là SA. D. Mặt nón đỉnh A có một đường sinh là AB. [ads] + Cho một đa giác đều có 20 đỉnh nội tiếp trong đường tròn (C). Lấy ngẫu nhiên hai đường chéo trong số các đường chéo của đa giác. Tính xác suất để lấy được hai đường chéo cắt nhau và giao điểm của hai đường chéo này nằm bên trong đường tròn? + Cho hai mặt cầu (S1) có tâm I1, bán kính R1 = 1, (S2) có tâm I2 bán kính R2 = 5. Lần lượt lấy hai điểm M1, M2 thuộc hai mặt cầu (S1), (S2). Gọi K là trung điểm của M1M2. Khi M1, M2 di chuyển trên (S1), (S2) thì K quét miền không gian là một khối tròn xoay có thể tích bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 sở GDĐT Kiên Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 2 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra vào ngày 13 tháng 06 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 sở GD&ĐT Kiên Giang : + Một vật thể đặt dọc theo trục Ox có vị trí bắt đầu từ x = 2 đến điểm kết thúc là x = 7. Người ta cắt vật thể đó bởi mặt phẳng vuông góc với Ox và được diện tích thiết diện có kích thước thay đổi theo hàm số f(x) = x2 + 2x (2 ≤ x ≤ 7). Thể tích vật thể đã cho bằng? + Một người gieo ngẫu nhiên một con xúc xắc cân đối và đồng chất 2 lần liên tiếp. Tính xác suất để tổng số chấm 2 lần gieo chia hết cho 5 và lần gieo thứ hai không bé hơn lần gieo thứ nhất. + Cho hàm số bậc ba y = f(x) = ax3 + (a – 9)x2 + cx + d (a khác 0) có đồ thị (C). Gọi (C) là đồ thị của hàm số y = f'(x). Biết rằng (C) và (C’) cắt nhau tại ba điểm có hoành độ là x1 = 2, x2 = 3 và x3 = 6. Diện tích hình phẳng giới hạn bởi các đường (C): y = f(x) và (C’): y = f'(x) bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán cụm liên trường THPT - Ninh Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử tốt nghiệp THPT năm 2023 môn Toán cụm liên trường THPT trực thuộc sở Giáo dục và Đào tạo tỉnh Ninh Bình (mã đề 132). Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán cụm liên trường THPT – Ninh Bình : + Trên tập hợp số phức, xét phương trình 2 z m z m 2 45 2016 80 0 (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đó có hai nghiệm phân biệt 1 2 z z sao cho 1 2 z z? + Trong không gian Oxyz, cho mặt cầu 2 S x y z 2 5 24 cắt mặt phẳng P x y 4 0 theo giao tuyến là đường tròn C. Điểm M thuộc C sao cho khoảng cách từ M đến A 4 12 1 nhỏ nhất có tung độ bằng? + Trên mặt phẳng tọa độ, tập hợp các điểm biểu diễn của số phức z thỏa mãn z i i z 2 3 là A. Đường tròn có phương trình 2 2 x y 4. B. Đường thẳng có phương trình x y 2 1 0. C. Đường thẳng có phương trình x y 2 3 0. D. Đường elip có phương trình 2 2 x y 4 4.
Đề thi thử Toán TN THPT 2023 lần 3 trường chuyên Nguyễn Trãi - Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2022 – 2023 lần 3 trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương; đề thi có đáp án mã đề 101 102 103 104. Trích dẫn Đề thi thử Toán TN THPT 2023 lần 3 trường chuyên Nguyễn Trãi – Hải Dương : + Cho hàm số bậc ba 3 2 f x ax bx cx d có hai điểm cực trị x = −1 và x = 3. Hình phẳng giới hạn bởi đồ thị hàm số y f x và đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y f x có diện tích bằng 12. Giá trị f f (1) (3) bằng? + Trong hệ tọa độ Oxyz cho điểm A thuộc mặt cầu 2 2 1 (5) 1 S x y z và điểm B thuộc mặt cầu 2 2 9 S x y z. Điểm M thay đổi trên mặt phẳng 2 2 15 0 P x y z. Giá trị nhỏ nhất của biểu thức T MA MB thuộc khoảng nào sau đây? + Cho khối chóp S ABCD có đáy ABCD là hình vuông, SA ABCD và BD a 3 thể tích khối chóp S ABCD bằng 3 2 a (tham khảo hình vẽ bên dưới). Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng?
Đề thi thử TN THPT 2023 lần 2 môn Toán cụm THPT huyện Thuận Thành - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử tốt nghiệp THPT năm 2023 lần 2 môn Toán cụm trường THPT và trung tâm GDTX huyện Thuận Thành, tỉnh Bắc Ninh; đề thi có đáp án mã đề Đề 101 Đề 102 Đề 103 Đề 104 Đề 105 Đề 106 Đề 107 Đề108 Đề 109 Đề 110 Đề 111 Đề 112 Đề 113 Đề 114 Đề 115 Đề 116 Đề 117 Đề 118 Đề 119 Đề 120 Đề 121 Đề 122 Đề 123 Đề 124; kỳ thi được diễn ra vào chiều thứ Sáu ngày 09 tháng 06 năm 2023. Trích dẫn Đề thi thử TN THPT 2023 lần 2 môn Toán cụm THPT huyện Thuận Thành – Bắc Ninh : + Cho hàm số 432 y f x ax bx cx dx e a b c d e R và 3 y gx x 4 3 có đồ thị như hình vẽ bên. Biết hai đồ thị y f x y gx cắt nhau tại 4 điểm phân biệt có hoành độ 1234 xx thỏa mãn 14 3 xx và xx 14 2 3 4 0 đồng thời diện tích phần gạch chéo trên hình bằng 7 10. Hỏi diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y fx hx a b c d e 4 nằm trong khoảng nào dưới đây? + Cho hình trụ tròn xoay có hai đáy là hai hình tròn(O;4) và (O′;4). Biết rằng tồn tại dây cung AB của đường tròn O sao cho ∆O’AB là tam giác đều và mặt phẳng (O’AB) hợp với đáy một góc 0 30. Tính diện tích xung quanh xq S của hình nón có đỉnh O′ đáy là hình tròn (O;4). + Trong không gian Oxyz cho hai đường thẳng 2 1 2 20 x xm d y d ym tR zt z t và điểm K (8;-1;0). Biết rằng tồn tại đường thẳng ∆ đi qua điểm K vuông góc với 2 đường 1 2 d d đồng thời thỏa mãn d d d d d Oz (1 2 ∆). Hỏi có tất cả bao nhiêu giá trị thực của m thỏa mãn?