Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra KSCL Toán 12 năm học 2017 - 2018 sở GD và ĐT Yên Bái

Đề kiểm tra KSCL Toán 12 năm học 2017 – 2018 sở GD và ĐT Yên Bái mã đề 001 thuộc chuyên mục đề thi thử môn Toán hướng đến kỳ thi THPT Quốc gia năm 2018, đề gồm 4 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 12/04/2018, đề thi thử Toán có đáp án và lời giải chi tiết . Trích dẫn đề KSCL Toán 12 sở Yên Bái 2017 – 2018 : + Cho khối trụ có chiều cao 20. Cắt khối trụ bởi một mặt phẳng ta được thiết diện là hình elip có độ dài trục lớn bằng 10. Thiết diện chia khối trụ ban đầu thành hai nửa, nửa trên có thể tích V1 , nửa dưới có thể tích V2 . Khoảng cách từ một điểm thuộc thiết diện gần đáy dưới nhất và điểm thuộc thiết diện xa đáy dưới nhất tới đáy dưới lần lượt là 8 và 14. Tính tỉ số V1/V2. [ads] + Lúc 10 giờ sáng trên sa mạc, một nhà địa chất đang ở tại vị trí A, anh ta muốn đến vị trí B (bằng ô tô) trước 12 giờ trưa, với AB = 70km. Nhưng trong sa mạc thì xe chỉ có thể di chuyển với vận tốc là 30km/h. Cách vị trí A 10km có một con đường nhựa chạy song song với đường thẳng nối từ A đến B. Trên đường nhựa thì xe có thể di chuyển với vận tốc 50km/h. Tìm thời gian ít nhất để nhà địa chất đến vị trí B? + Ba cầu thủ sút phạt đền 11m, mỗi người sút một lần với xác suất ghi bàn tương ứng là x, y và 0,6 (với x > y). Biết xác suất để ít nhất một trong ba cầu thủ ghi bàn là 0,976 và xác suất để cả ba cầu thủ đều ghi bàn là 0,336. Tính xác suất để có đúng hai cầu thủ ghi bàn.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 12 năm học 2019 - 2020 sở GDĐT Thái Bình
Nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán, chiều thứ Sáu ngày 03 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Thái Bình tổ chức kỳ thi khảo sát chất lượng môn Toán 12 năm học 2019 – 2020. Đề khảo sát chất lượng Toán 12 năm học 2019 – 2020 sở GD&ĐT Thái Bình có cấu trúc đề bám sát đề minh họa tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo; đề thi có mã đề 104, gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101, 102, 103, 104, 105, 106, 107, 108. Trích dẫn đề khảo sát chất lượng Toán 12 năm học 2019 – 2020 sở GD&ĐT Thái Bình : + Đường cong hình bên là đồ thị của hàm số y = ax^4 + bx^2 + c với a, b, c là các số thực. Mệnh đề nào dưới đây đúng? A. Phương trình y’ = 0 có ba nghiệm thực phân biệt. B. Phương trình y’ = 0 có hai nghiệm thực phân biệt. C. Phương trình y’ = 0 vô nghiệm trên tập số thực. D. Phương trình y’ = 0 có đúng một nghiệm thực. [ads] + Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a, điểm M là trung điểm cạnh BC và I là tâm hình vuông CDD’C’. Mặt phẳng (AMI) chia khối lập phương thành hai khối đa diện, trong đó khối đa diện không chứa điểm D có thể tích là V. Khi đó giá trị của V là? + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng √6. Biết rằng các mặt bên của hình chóp có diện tích bằng nhau và một trong các cạnh bên bằng 3√2. Tính thể tích nhỏ nhất của khối chóp S.ABC.
Bộ đề tham khảo thi tốt nghiệp THPT năm 2020 môn Toán sở GDĐT Kon Tum
Nhằm giúp học sinh khối 12 chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020, sở Giáo dục và Đào tạo tỉnh Kon Tum công bố bộ đề tham khảo thi tốt nghiệp THPT năm 2020 môn Toán. Tài liệu gồm 83 trang, bao gồm 06 đề thi thử tốt nghiệp THPT 2020 môn Toán có cấu trúc bám sát, độ khó tương tự đề minh họa THPT 2020 môn Toán của Bộ GD&ĐT, có đáp án và lời giải chi tiết các câu vận dụng – vận dụng cao. Trích dẫn bộ đề tham khảo thi tốt nghiệp THPT năm 2020 môn Toán sở GD&ĐT Kon Tum : + Cho hai hình vuông ABCD và ABEF có cạnh bằng 1, lần lượt nằm trên hai mặt phẳng vuông góc nhau. Gọi H là điểm sao cho ED = 3EH và S là điểm sao cho HB = 3SH. Thể tích của khối đa diện ABCDSEF bằng a/b với a và b thuộc N* và phân số a/b tối giản, khi đó 2a + b bằng? [ads] + Cho hình trụ có chiều cao bằng 4. Xét hình nón có đáy trùng với đáy hình trụ, đỉnh là tâm của hình tròn đáy hình trụ (tham khảo hình vẽ). Mặt phẳng qua trục cắt hình nón theo thiết diện là tam giác vuông O’AB. Diện tích xung quanh của hình nón bằng? + Cho hàm số y = f(x) liên tục, có đạo hàm trên R và có đồ thị như hình vẽ bên. Gọi P và p lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số g(x) = f(2√2x + √1 – x) + m (với m là tham số thực) trên đoạn [0;1]. Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-10;10) để P > 2p?
Đề khảo sát chất lượng Toán 12 năm 2020 trường THPT Hậu Lộc 2 - Thanh Hóa
Đề khảo sát chất lượng Toán 12 năm 2020 trường THPT Hậu Lộc 2 – Thanh Hóa mã đề 132 gồm có 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi nhằm giúp học sinh ôn tập hướng đến kỳ thi tốt nghiệp THPT 2020 môn Toán do Bộ Giáo dục và Đào tạo tổ chức. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2020 trường THPT Hậu Lộc 2 – Thanh Hóa : + Một người có số tiền là 50.000.000 đồng đem gửi tiết kiệm theo thể thức lãi kép, loại kỳ hạn 6 tháng vào ngân hàng với lãi suất 8% / năm. Vậy sau thời gian 4 năm 9 tháng, người đó nhận được tổng số tiền cả vốn lẫn lãi là bao nhiêu (số tiền được làm tròn đến 100 đồng). Biết rằng người đó không rút cả vốn lẫn lãi tất cả các định kỳ trước và nếu rút trước thời hạn thì ngân hàng trả lãi suất theo loại không kỳ hạn 0,01% một ngày (1 tháng tính 30 ngày). [ads] + Cho hình nón cụt (N) có bán kính đáy dưới r1 = 18, bán kính đáy trên r2 = 6. Biết rằng có đúng một quả cầu được đựng trong nón cụt như hình vẽ. Quả cầu tiếp xúc với hai đáy và tiếp xúc với tất cả các đường sinh của nón cụt. + Cho hình lăng trụ ABC.A’B’C’ có thể tích V, I thuộc cạnh CC’ sao cho CI = 4IC’. Gọi M và N lần lượt là điểm đối xứng của A’ và B’ qua I. Tính theo V thể tích của khối đa diện CABMNC’.
Đề khảo sát thi TN THPT 2020 môn Toán trường Nguyễn Tất Thành - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát thi TN THPT 2020 môn Toán trường THCS & THPT Nguyễn Tất Thành – Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề khảo sát thi TN THPT 2020 môn Toán trường Nguyễn Tất Thành – Hà Nội : + Trong không gian Oxyz cho ba điểm A(1;1;-1), B(2;0;3), C(3;2;1) và điểm G là trọng tâm tam giác ABC. Mặt phẳng (P) đi qua điểm G (không đi qua O) cắt các tia OA, OB, OC lần lượt tại A’, B’, C’. Khối tứ diện OA’B’C’ có thể tích nhỏ nhất bằng? + Một người gửi 50 triệu đồng vào một ngân hàng với lãi suất 8,4 % / năm theo hình thức lãi kép (tức là sau mỗi năm, số tiền lãi của năm trước sẽ được nhập vào vốn để tính lãi cho năm tiếp theo). Hỏi người đó phải gửi ít nhất bao nhiêu năm để khi rút tiền khỏi ngân hàng người đó lĩnh được số tiền (cả vốn lẫn lãi) lớn hơn hoặc bằng 100 triệu đồng? [ads] + Trong mặt phẳng Oxy, gọi A, B, C lần lượt là các điểm biểu diễn các số phức z1 = i, z2 = 1 + 3i, z3 = a + ai (a thuộc R). Biết rằng có hai giá trị thực của a là a1 và a2 để tam giác ABC có diện tích bằng 5. Tính giá trị của biểu thức P = a1a2.