Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra KSCL Toán 12 năm học 2017 - 2018 sở GD và ĐT Yên Bái

Đề kiểm tra KSCL Toán 12 năm học 2017 – 2018 sở GD và ĐT Yên Bái mã đề 001 thuộc chuyên mục đề thi thử môn Toán hướng đến kỳ thi THPT Quốc gia năm 2018, đề gồm 4 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 12/04/2018, đề thi thử Toán có đáp án và lời giải chi tiết . Trích dẫn đề KSCL Toán 12 sở Yên Bái 2017 – 2018 : + Cho khối trụ có chiều cao 20. Cắt khối trụ bởi một mặt phẳng ta được thiết diện là hình elip có độ dài trục lớn bằng 10. Thiết diện chia khối trụ ban đầu thành hai nửa, nửa trên có thể tích V1 , nửa dưới có thể tích V2 . Khoảng cách từ một điểm thuộc thiết diện gần đáy dưới nhất và điểm thuộc thiết diện xa đáy dưới nhất tới đáy dưới lần lượt là 8 và 14. Tính tỉ số V1/V2. [ads] + Lúc 10 giờ sáng trên sa mạc, một nhà địa chất đang ở tại vị trí A, anh ta muốn đến vị trí B (bằng ô tô) trước 12 giờ trưa, với AB = 70km. Nhưng trong sa mạc thì xe chỉ có thể di chuyển với vận tốc là 30km/h. Cách vị trí A 10km có một con đường nhựa chạy song song với đường thẳng nối từ A đến B. Trên đường nhựa thì xe có thể di chuyển với vận tốc 50km/h. Tìm thời gian ít nhất để nhà địa chất đến vị trí B? + Ba cầu thủ sút phạt đền 11m, mỗi người sút một lần với xác suất ghi bàn tương ứng là x, y và 0,6 (với x > y). Biết xác suất để ít nhất một trong ba cầu thủ ghi bàn là 0,976 và xác suất để cả ba cầu thủ đều ghi bàn là 0,336. Tính xác suất để có đúng hai cầu thủ ghi bàn.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử TN THPT 2024 lần 1 môn Toán trường THPT Yên Châu - Sơn La
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2023 – 2024 lần 1 môn Toán trường THPT Yên Châu, tỉnh Sơn La; đề thi có đáp án trắc nghiệm mã đề 000 101 102 103 104 105 106 107 108 và lời giải chi tiết các bài toán vận dụng cao. Trích dẫn Đề thi thử TN THPT 2024 lần 1 môn Toán trường THPT Yên Châu – Sơn La : + Cho hàm số bậc hai y fx có đồ thị (P) và đường thẳng d cắt (P) tại hai điểm như trong hình vẽ bên. Biết rằng hình phẳng giới hạn bởi (P) và d có diện tích 125 9 S. Tích phân 6 1 25 d x f bằng? + Cho khối lăng trụ ABC A B C có AC′ = 8, diện tích của tam giác ABC bằng 9 và đường thẳng AC′ tạo với mặt phẳng (ABC) một góc 60°. Thể tích của khối lăng trụ đã cho bằng? + Cho hình nón có chiều cao bằng 3. Một mặt phẳng (α) đi qua đỉnh hình nón và cắt hình nón theo một thiết diện là tam giác đều, góc giữa trục của hình nón và mặt phẳng (α) là 45°. Thể tích của hình nón đã cho bằng?
Đề thi thử TN THPT 2024 môn Toán lần 2 sở GDĐT Bạc Liêu
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 môn Toán lần 2 sở Giáo dục và Đào tạo tỉnh Bạc Liêu. Trích dẫn Đề thi thử TN THPT 2024 môn Toán lần 2 sở GD&ĐT Bạc Liêu : + Cho hàm số y = f(x) có đạo hàm liên tục trên R và có đồ thị y = f'(x) như hình vẽ. Đặt g(x) = f(x – m) – 1/2(x – m – 1)2 + 2024 với m là tham số thực. Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số y = g(x) đồng biến trên khoảng (5;6). Tổng tất cả các phần tử trong S bằng? + Trong không gian Oxyz, cho mặt cầu (S): (x – 1)2 + (y – 2)2 + (z – 3)2 = 9 và điểm A(0;0;2). Mặt phẳng (P) đi qua điểm A và cắt khối cầu (S) theo giao tuyến là một hình tròn có diện tích nhỏ nhất. Phương trình mặt phẳng (P) là? + Có bao nhiêu giá trị nguyên dương của tham số m để bất phương trình nghiệm đúng với mọi x?
Đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở GDĐT Lạng Sơn
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở Giáo dục và Đào tạo tỉnh Lạng Sơn; kỳ thi được diễn ra vào thứ Ba ngày 27 tháng 02 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101 102 103 104 105 106 107 108 và lời giải chi tiết các bài toán vận dụng – vận dụng cao. Ma trận Đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở GD&ĐT Lạng Sơn : + Bài toán chỉ sử dụng tổ hợp. + Xác suất của bài toán chọn nhóm. + Giới hạn phân thức có bậc tử bằng bậc mẫu. + Góc giữa cạnh bên với mặt đáy. + KC từ chân đường cao đến mặt xiên trong hình chóp. + Tìm cực trị của hàm số khi biết đồ thị hàm số. + Tìm cực trị của hàm số khi biết BBT. + Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước. + Tìm số điểm cực trị của hàm số |f(u)| khi biết đồ thị, BBT f’(x). + Tìm tiệm cận f(x) dựa vào BBT f(x). + Tìm đường tiệm cận, số đường TC của hs. + Nhận dạng BBT hàm số bậc 3. + Tìm tọa độ giao điểm của đồ thị hai hs khi biết f(x) và g(x). + Tìm số nghiệm của pt f(x) = a khi biết đồ thị, BBT f(x). + Tập xác định của hàm số lũy thừa có số mũ hữu tỷ. + Dùng công thức biến đổi cơ số logarit rút gọn biểu thức. + Tính đạo hàm của hàm số logarit. + Tìm Min, Max của biểu thức khi có đk f(u) = f(v) chứa logarit. + Tìm số giá trị nguyên của y để PT Loga có nghiệm thỏa mãn đk bằng PP đánh giá. + GBPT Mũ cơ bản. + GBPT Logarit cơ bản. + GBPT Loga dạng tích. + Nguyên hàm cơ bản của hàm số đa thức. + Nguyên hàm cơ bản của hàm lượng giác. + Định nghĩa của tích phân. + Tính chất của tích phân. + Tích phân của hàm ẩn bằng PP từng phần. + Tích phân của hàm ẩn bằng tạo ra công thức đạo hàm tích, thương. + Biết f’(x), tính tích phân f(x). + Ý nghĩa hình học của tích phân. + Tìm khoảng đơn điệu của hàm số khi biết f’(x), BXD f’(x). + Xét tính đơn điệu của hàm số f(x) khi biết đồ thị, BBT f’(x). + Áp dụng công thức tính thể tích khối chóp. + Áp dụng công thức tính thể tích khối lăng trụ. + Tính chiều cao, khoảng cách bằng thể tích. + Thể tích khối lăng trụ đứng có góc giữa hai mp. + Tính V, Sxq hoặc Stp khi biết R, h, l. + Tính Sxq hoặc Stp khi biết R và h. + Tính V, S khi biết R. + Bài toán kết hợp hình cầu với hình trụ. + Xác định tọa độ vectơ qua phép cộng, trừ vectơ. + Tính độ dài đoạn thẳng khi biết hai đầu mút, độ dài vectơ. + Xác định tọa độ tâm, R, S, V của MC khi biết PTMC. + Viết PTMC khi biết tâm và đi qua 1 điểm. + Nhận diện phương trình mặt cầu. + Xác định VTPT khi biết PTMP. + Nhận diện điểm thuộc MP. + Viết PTMP trung trực của đoạn thẳng. + Tính KC từ điểm đến MP. + Viết PTMP chắn hai đoạn theo tỉ số.
Đề thi tháng lần 2 Toán 12 năm 2023 - 2024 trường THPT Ngô Sĩ Liên - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi tháng lần 2 môn Toán 12 năm học 2023 – 2024 trường THPT Ngô Sĩ Liên, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101. Trích dẫn Đề thi tháng lần 2 Toán 12 năm 2023 – 2024 trường THPT Ngô Sĩ Liên – Bắc Giang : + Trong không gian Oxyz cho tứ diện ABCD có A B C D. Trên các cạnh AB AC AD lần lượt lấy các điểm BCD sao cho 4 AB AC AD AB AC AD. Viết phương trình mặt phẳng BCD biết tứ diện A B C D có thể tích nhỏ nhất. + Một khối trụ có đường cao bằng 5, chu vi của thiết diện qua trục gấp 3 lần đường kính đáy. Thể tích của khối trụ bằng? + Cho hàm số 4 2 fx 32 4. Có bao nhiêu giá trị nguyên của tham số m sao cho ứng với mỗi m tổng giá trị các nghiệm phân biệt thuộc khoảng (−4;1) của phương trình 2 fx m 4 5 bằng -8?