Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 năm 2019 - 2020 phòng GDĐT thành phố Thái Nguyên

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 năm học 2019 – 2020 phòng GD&ĐT thành phố Thái Nguyên; đề thi có 01 trang với 06 bài toán dạng tự luận, học sinh làm bài trong 150 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2019 – 2020 phòng GD&ĐT thành phố Thái Nguyên : + Bạn Lan có nhiều hơn 11 bài kiểm tra và các bài kiểm tra đều đạt 8, 9, 10 điểm. Tổng số điểm của các bài kiểm tra đó là 100 điểm. Hỏi bạn Lan có bao nhiêu bài kiểm tra và cho biết có bao nhiêu bài đạt 8, 9, 10 điểm. + Cho tam giác ABC vuông tại A có AH vuông góc với BC (H thuộc BC). Gọi D là chân đường phân giác trong của góc B (D thuộc AC). K là hình chiếu vuông góc của A trên BD. E là giao điểm của hai đường thẳng BD và AH. Chứng minh: 1/AK^2 = 1/AB^2 + 1/AE^2. [ads] + Cho tam giác ABC có ba góc nhọn và AB < AC. Đường phân giác trong của góc A cắt cạnh BC tại D. Đường tròn đường kính AD cắt AB, AC lần lượt tại E và F. Gọi M là giao điểm của EF và AD. a. Chứng minh M là trung điểm của EF. b.Gọi K là giao điểm của AD và đường tròn ngoại tiếp tam giác ABC (K khác A). Chứng minh AB.KC = AK.BD. c. Cho diện tích của tam giác ABC là 100 (đơn vị diện tích). Tính diện tích của tứ giác AEKF.

Nguồn: toanmath.com

Đọc Sách

Đề chọn học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT thành phố Hà Nội
Sáng thứ Tư ngày 13 tháng 01 năm 2021, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp thành phố môn Toán lớp 9 năm học 2020 – 2021. Đề chọn học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hà Nội : + Với các số thực không âm a, b, c thỏa mãn a2 + b2 + c2 = 1, tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức Q = √(a + b) + √(b + c) + √(c + a). + Tìm tất cả các số nguyên dương x, y, z thỏa mãn 3^x + 2^y = 1 + 2^z. + Cho một hình chữ nhật có diện tích bằng 1. Năm điểm phân biệt được đặt tùy ý vào hình chữ nhật sao cho không có ba điểm nào thẳng hàng (mỗi điểm trong năm điểm đó có thể được đặt trên cạnh hoặc đặt nằm trong hình chữ nhật). a) Chứng minh mọi tam giác tạo bởi ba điểm trong năm điểm đã cho đều có diện tích không vượt quá 3. b) Với mỗi cách đặt năm điểm vào hình chữ nhật như trên, gọi N là số tam giác có ba đỉnh là ba điểm trong năm điểm đó và có diện tích không vượt quá 1. Tìm giá trị nhỏ nhất của N.
Đề học sinh giỏi Toán 9 vòng 2 năm 2020 - 2021 phòng GDĐT Ba Đình - Hà Nội
Đề học sinh giỏi Toán 9 vòng 2 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 19 tháng 12 năm 2020.
Đề học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Hưng Yên
Đề học sinh giỏi Toán 9 năm học 2020 – 2021 phòng GD&ĐT thành phố Hưng Yên gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 21 tháng 12 năm 2020.
Đề HSG Toán 9 vòng 1 năm 2020 - 2021 trường Nguyễn Tất Thành - Hà Nội
Đề HSG Toán 9 vòng 1 năm học 2020 – 2021 trường THCS&THPT Nguyễn Tất Thành – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, kỳ thi được diễn ra vào ngày 15 tháng 09 năm 2020.