Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2019 lần 3 trường THPT chuyên Quốc học Huế

Nhằm kiểm tra chất lượng môn Toán, đồng thời giúp học sinh khối 12 rèn luyện hướng đến kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019, vừa qua, trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế tổ chức kỳ thi thử THPT Quốc gia môn Toán năm 2019 lần thứ ba. Đề thi thử Toán THPT Quốc gia 2019 lần 3 trường THPT chuyên Quốc học Huế có mã đề 132, đề được biên soạn dựa theo cấu trúc đề minh họa THPT Quốc gia môn Toán năm 2019 của Bộ Giáo dục và Đào tạo, đề gồm 7 trang với 50 câu trắc nghiệm, thời gian làm bài thi thử Toán là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi thử Toán THPT Quốc gia 2019 lần 3 trường THPT chuyên Quốc học Huế : + Một hộp đựng 10 tấm thẻ phân biệt gồm 6 tấm thẻ ghi số 1 và 4 tấm thẻ ghi số 0. Một trò chơi được thực hiện bằng cách rút ngẫu nhiên một thẻ từ hộp rồi hoàn lại. Sau một số lần rút, trò chơi sẽ kết thúc khi có đúng 3 lần rút được thẻ ghi số 1 hoặc đúng 3 lần thẻ ghi số 0. Tính xác suất để trò chơi kết thúc khi có đúng 3 lần rút được thẻ ghi số 1. [ads] + Một người được trả lương qua tài khoản thanh toán (ATM) của ngân hàng Vietcombank. Người đó dùng 35 triệu đồng tiền mặt để mở thêm tài khoản tiết kiệm tự động, kỳ hạn 1 tháng với hình thức cứ sau mỗi tháng thì ngân hàng tự động chuyển từ tài khoản ATM qua tài khoản tiết kiệm tự động là 3 triệu đồng. Hỏi sau 5 năm, người đó rút bao nhiêu tiền trong tài khoản tiết kiệm tự động đó, biết rằng trong suốt 5 năm, người đó không rút tiền, lãi suất không đổi là 5%/năm và nếu đến kỳ hạn mà người đó rút hết tài khoản tiết kiệm thì ngân hàng sẽ không chuyển tiền từ tài khoản ATM sang tài khoản tiết kiệm nữa. + Tìm số phát biểu đúng trong các phát biểu sau: (1) Đồ thị hàm số y = x^a với a < 0 nhận trục Ox làm tiệm cận ngang và nhận trục Oy làm tiệm cận đứng. (2) Đồ thị hàm số y = x^a với a > 0 không có tiệm cận. (3) Đồ thị hàm số y = log_a x với 0 < a khác 1 nhận trục Oy làm tiệm cận đứng và không có tiệm cận ngang. (4) Đồ thị hàm số y = a^x với 0 < a khác 1 nhận trục Ox làm tiệm cận ngang và không có tiệm cận đứng.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử TN THPT 2023 môn Toán lần 2 cụm liên trường THPT - Quảng Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 2 cụm liên trường THPT trực thuộc sở GD&ĐT tỉnh Quảng Nam (mã đề 101). Trích dẫn Đề thi thử TN THPT 2023 môn Toán lần 2 cụm liên trường THPT – Quảng Nam : + Trong không gian Oxyz cho đường thẳng 1 1 x t d y y t và mặt phẳng 2 3 0 P x z. Biết đường thẳng đi qua O(0;0;0), có một vectơ chỉ phương u a b 1, vuông góc với đường thẳng d và hợp với mặt phẳng P một góc lớn nhất. Hỏi điểm nào sau đây thuộc đường thẳng? + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a góc 0 BAD 120. Cạnh bên SA a 3 và vuông góc với đáy ABCD. Bán kính mặt cầu ngoại tiếp khối chóp SACD nhận giá trị? + Trong không gian Oxyz cho hai điểm M 100 và N 113. Mặt phẳng vuông góc với đường thẳng ON và cách điểm M một khoảng 11. Biết phương trình mặt phẳng có dạng x y z c 3 0 c c thuộc tập hợp nào sau đây?
Đề thi thử Toán TN THPT 2023 lần 2 trường chuyên Lê Khiết - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm 2023 lần 2 trường THPT chuyên Lê Khiết, tỉnh Quảng Ngãi (mã đề 101). Trích dẫn Đề thi thử Toán TN THPT 2023 lần 2 trường chuyên Lê Khiết – Quảng Ngãi : + Trong không gian Oxyz cho hai điểm A 0 2 1 B 1 2 3 và mặt phẳng P x y 2 1 0. Đường thẳng d đi qua điểm A, song song với mặt phẳng P sao cho khoảng cách từ B đến d nhỏ nhất có một vectơ chỉ phương là u a b 1. Khi đó a b 2 bằng? + Trong không gian Oxyz cho hai mặt phẳng P x y z Q x y z 2 2 1 0 và các điểm A B 1 1 2 3. Gọi S là mặt cầu bất kỳ qua A và tiếp xúc với cả hai mặt phẳng P Q. Gọi I là tâm của mặt cầu S. Giá trị lớn nhất của độ dài đoạn thẳng BI thuộc khoảng nào dưới đây? + Gọi M N lần lượt là điểm biểu diễn của số phức z có phần thực không âm và số phức w thỏa mãn 2 2 4 z w w i 4 2. Giá trị nhỏ nhất của khoảng cách MN bằng a b với a a b b tối giản. Khi đó a b 2 bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 sở GDĐT Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm 2023 môn Toán lần 2 sở Giáo dục và Đào tạo tỉnh Bắc Giang; đề thi có đáp án mã đề 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124; kỳ thi được diễn ra vào thứ Ba ngày 23 tháng 05 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 sở GD&ĐT Bắc Giang : + Trong một hòm phiếu có 10 lá phiếu ghi các số tự nhiên từ 1 đến 10 (mỗi lá ghi một số, không có hai lá phiếu nào được ghi cùng một số). Rút ngẫu nhiên cùng lúc hai lá phiếu. Tính xác suất để hiệu hai số ghi trên hai lá phiếu rút được là một số lẻ lớn hơn hoặc bằng 5. + Cho hàm số f x có đạo hàm liên tục trên và thỏa mãn các điều kiện f (0 0) 2 3 x f x xf x x 1 x. Khi đó diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y fx trục hoành và đường thẳng x = 3 xấp xỉ giá trị nào nhất trong các giá trị sau đây? + Cho hình nón có đỉnh S bán kính đáy bằng a 3. Một mặt phẳng đi qua đỉnh của hình nón, cắt hình nón theo một thiết diện là tam giác vuông cân SAB. Biết khoảng cách giữa AB và trục của hình nón bằng a. Tính thể tích của khối nón giới hạn bởi hình nón đã cho theo a.
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 sở GDĐT Sơn La
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán lần thứ hai sở Giáo dục và Đào tạo tỉnh Sơn La; đề thi có đáp án trắc nghiệm mã đề MĐ 101, MĐ 102, MĐ 103, MĐ 104, MĐ 105, MĐ 106, MĐ 107, MĐ 108; kỳ thi được diễn ra vào thứ Hai ngày 22 tháng 05 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 sở GD&ĐT Sơn La : + Cho khối lăng trụ tam giác đều ABC A B C có AB = 4 và AB BC. Biết rằng thể tích của khối lăng trụ đã cho bằng m n trong đó mn là các số nguyên dương và m n là phân số tối giản. Khi đó tổng m n bằng? + Cho hàm số f x có đạo hàm liên tục trên khoảng và thỏa mãn 3 2 2 3 x x f x. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y f x trục hoành và hai đường thẳng x x 0 1 có giá trị thuộc khoảng nào dưới đây? + Cho ab là các số thực thay đổi thỏa mãn 1 2 a b. Biết giá trị nhỏ nhất của biểu thức 2 2 2log 4 4 9 log a b a P b b a là 3 9 m n (với m n là các số nguyên dương). Khi đó giá trị của biểu thức F m n 2 3 1 bằng?