Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Hà Tĩnh

Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Hà Tĩnh tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Hà Tĩnh. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Hà Tĩnh, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Hà Tĩnh : + Một đội xe vận tải được phân công chở 112 tấn hàng. Trước giờ khởi hành có 2 xe phải đi làm nhiệm vụ khác nên mỗi xe còn lại phải chở thêm 1 tấn hàng so với dự tính. Tính số xe ban đầu của đội xe, biết rằng mỗi xe đều chở khối lượng hàng như nhau. [ads] + Cho đường tròn tâm O và điểm M nằm ngoài đường tròn đó. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm). Đường thẳng (d) thay đổi đi qua M, không đi qua O và luôn cắt đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D). a) Chứng minh AMBO là tứ giác nội tiếp. b) Chứng minh MC.MD = MA^2. c) Chứng minh đường tròn ngoại tiếp tam giác OCD luôn đi qua điểm cố định khác O. + Tìm các giá trị của a và b để đường thẳng (d): y = ax + b qua hai điểm M(1;5) và N(2;8).

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Bình Phước
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Bình Phước gồm có 01 trang với 06 bài toán dạng tự luận, thời gian làm bài thi là 150 phút; kỳ thi được diễn ra vào Chủ Nhật ngày 19 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Bình Phước : + Tìm tất cả các giá trị của m để đường thẳng (d): y = 2x − m cắt parabol (P): y = x2 tại hai điểm phân biệt có hoành độ dương. + Tìm tất cả các giá trị của m để phương trình x2 + mx + 8 = 0 và phương trình x2 + x + m = 0 có ít nhất một nghiệm chung. [ads] + Chứng minh rằng với a, b, c là các số thực khác 0 thì tồn tại ít nhất một trong các phương trình sau có nghiệm 4ax2 + 2(b + c)x + c = 0 (1); 4bx2 + 2(c + a)x + a = 0 (2); 4cx2 + 2(a + b)x + b = 0 (3).
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Bắc Ninh
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Bắc Ninh dành cho thí sinh thi vào các lớp chuyên Toán – chuyên Tin học; kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Một bảng có kích thước 2n × 2n ô vuông, n là số nguyên dương. Người ta đánh dấu vào 3n ô bất kỳ của bảng. Chứng minh rằng có thể chọn ra n hàng và n cột của bảng sao cho các ô được đánh dấu đều nằm trên n hàng và n cột này. + Cho tam giác ABC vuông tại A, đường cao AH. Gọi I, J, K lần lượt là tâm đường tròn nội tiếp tam giác ABC, ABH, ACH. Chứng minh rằng đường tròn ngoại tiếp tam giác IJK và đường tròn nội tiếp tam giác ABC có bán kính bằng nhau. + Cho các số a, b, c thỏa mãn điều kiện a + b + c = 6. Chứng minh rằng có ít nhất một trong ba phương trình sau có nghiệm x2 + ax + 1 = 0; x2 + bx + 1 = 0; x2 + cx + 1 = 0.
Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường THPT chuyên Bắc Giang
Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên Bắc Giang gồm có 01 trang với 05 bài toán, đề được biên soạn theo dạng đề tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được tổ chức vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên Bắc Giang : + Cho parabol (P) : y = x2 và đường thẳng (d): y = −mx + 2 − m (m là tham số). Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho biểu thức T = 1/(x1 + 1)^4 + 1/(x2 + 1)^4 đạt giá trị nhỏ nhất. + Trong mặt phẳng cho 2020 điểm phân biệt sao cho từ ba điểm bất kỳ luôn chọn ra được hai điểm có khoảng cách nhỏ hơn 1cm. Chứng minh rằng tồn tại một hình tròn có bán kính bằng 1cm chứa không ít hơn 1010 điểm trong 2020 điểm đã cho. + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O. Các đường cao AD, BE và CF của tam giác ABC đồng quy tại H. Gọi M là trung điểm của đoạn thẳng BC, K là giao điểm của hai đường thẳng BC và EF. 1. Chứng minh rằng KB.KC = KE.KF và H là tâm đường tròn nội tiếp của tam giác DEF. 2. Qua điểm F kẻ đường thẳng song song với đường thẳng AC, đường thẳng này cắt các đường thẳng AK, AD lần lượt tại P và Q. Chứng minh FP = FQ. 3. Chứng minh rằng đường thẳng HK vuông góc với đường thẳng AM.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT An Giang
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT An Giang gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút, kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT An Giang : + Cho hàm số y = (√3 − 1)x + 1 có đồ thị là đường thẳng (d). 1. Vẽ đồ thị (d) của hàm số đã cho trên mặt phẳng tọa độ. 2. Đường thẳng (d0) song song với (d) và đi qua điểm có tọa độ (0;3). Đường thẳng (d) và (d0) cắt trục hoành lần lượt tại A; B, cắt trục tung lần lượt tại D; C. Tính diện tích tứ giác ABCD. + Trên đường tròn đường kính AD lấy hai điểm B và C khác phía với AD sao cho BAC = 60◦. Từ B kẻ BE vuông góc với AC (E ∈ AC). 1. Chứng minh rằng hai tam giác ABD và BEC đồng dạng. 2. Biết EC = 3cm. Tính độ dài dây BD. + Trên mỗi đỉnh của một đa giác có 12 cạnh người ta ghi một số, mỗi số trên một đỉnh là tổng của hai số ở hai đỉnh liền kề. Biết hai số ở hai đỉnh A5 và A9 là 10 và 9. Tìm số ở đỉnh A1.