Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán

Tài liệu gồm 87 trang, được biên soạn bởi tập thể quý thầy, cô giáo trường THPT An Phước, tỉnh Ninh Thuận: 1. Trần Ngọc Hùng; 2. Ngụy Như Thái; 3. Quảng Đại Hạn; 4. Quảng Đại Phước; 5. Đàng Xuân Phi; 6. Quảng Đại Mưa; 7. Nguyễn Văn Hồng … hướng dẫn phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán. PHẦN 1 : MA TRẬN ĐỀ MINH HỌA BỘ GIÁO DỤC 2022. A Khung ma trận. B Bảng mô tả chi tiết nội dung câu hỏi. Câu 1 (2D4Y1-1). Xác định các yếu tố cơ bản của số phức. Câu 2 (2H3Y1-3). Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Câu 3 (2D1Y5-8). Câu hỏi lý thuyết. Câu 4 (2H2Y2-1). Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. Câu 5 (2D3Y1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 6 (2D1Y2-2). Tìm cực trị dựa vào BBT, đồ thị. Câu 7 (2D2Y6-1). Bất phương trình cơ bản. Câu 8 (2H1Y3-2). Tính thể tích các khối đa diện. Câu 9 (2D2Y2-1). Tập xác định của hàm số chứa hàm lũy thừa. Câu 10 (2D2Y5-1). Phương trình cơ bản. Câu 11 (2D3Y2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 12 (2D4Y2-1). Thực hiện phép tính. Câu 13 (2H3Y2-2). Xác định VTPT. Câu 14 (2H3Y1-1). Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục. Câu 15 (2D4Y1-2). Biểu diễn hình học cơ bản của số phức. Câu 16 (2D1Y4-1). Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Câu 17 (2D2Y3-2). Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Câu 18 (2D1Y5-1). Nhận dạng đồ thị, bảng biến thiên. Câu 19 (2H3Y3-3). Tìm tọa độ điểm liên quan đến đường thẳng. Câu 20 (1D2Y2-1). Bài toán chỉ sử dụng P hoặc C hoặc A. Câu 21 (2H1Y3-2). Tính thể tích các khối đa diện. Câu 22 (2D2Y4-2). Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Câu 23 (2D1Y1-2). Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Câu 24 (2H2Y1-2). Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao,. Câu 25 (2D3Y2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 26 (1D3Y3-3). Tìm hạng tử trong cấp số cộng. Câu 27 (2D3Y1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 28 (2D1Y2-2). Tìm cực trị dựa vào BBT, đồ thị. Câu 29 (2D1B3-1). GTLN, GTNN trên đoạn [a ;b ]. Câu 30 (2D1B1-1). Xét tính đơn điệu của hàm số cho bởi công thức. Câu 31 (2D2B3-2). Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Câu 32 (1H3B2-3). Xác định góc giữa hai đường thẳng (dùng định nghĩa). Câu 33 (2D3B2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 34 (2H3B3-7). Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu. Câu 35 (2D4B3-2). Xác định các yếu tố cơ bản của số phức qua các phép toán. Câu 36 (1H3B5-3). Khoảng cách từ một điểm đến một mặt phẳng. Câu 37 (1D2B5-4). Tính xác suất bằng công thức nhân. Câu 38 (2H3B3-2). Viết phương trình đường thẳng. Câu 39 (2D2K6-3). Phương pháp đặt ẩn phụ. Câu 40 (2D1K5-4). Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Câu 41 (2D3K1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 42 (2H1K3-4). Các bài toán khác(góc, khoảng cách,…) liên quan đến thể tích khối đa diện. Câu 43 (2D4K4-2). Định lí Viet và ứng dụng. Câu 44 (2D4G5-1). Phương pháp hình học tìm cực trị số phức. Câu 45 (2D3G3-1). Diện tích hình phẳng được giới hạn bởi các đồ thị. Câu 46 (2H3K3-2). Viết phương trình đường thẳng. Câu 47 (2H2K1-1). Thể tích khối nón, khối trụ. Câu 48 (2D2G6-5). Phương pháp hàm số, đánh giá. Câu 49 (2H2G2-6). Bài toán tổng hợp về khối nón, khối trụ, khối cầu. Câu 50 (2D1G2-1). Tìm cực trị của hàm số cho bởi công thức. PHẦN 2 : PHÂN TÍCH ĐỀ MINH HỌA BỘ GIÁO DỤC 2022. PHẦN 3 : BÀI TẬP CHO HỌC SINH RÈN LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Casio skill trắc nghiệm Nguyễn Thế Anh, Nguyễn Thế Lực
Nội dung Casio skill trắc nghiệm Nguyễn Thế Anh, Nguyễn Thế Lực Bản PDF - Nội dung bài viết Tài liệu Casio skill trắc nghiệm ver 1.0 Tài liệu Casio skill trắc nghiệm ver 1.0 Tài liệu Casio skill trắc nghiệm ver 1.0 được viết bởi 2 tác giả Nguyễn Thế Anh và Nguyễn Thế Lực. Tài liệu này bao gồm 386 trang với nhiều nội dung hấp dẫn và hữu ích dành cho người đọc. Các thông tin được trình bày một cách logic và chi tiết, giúp người đọc dễ hiểu và áp dụng vào thực tế.
Bí kíp Thế Lực 2016
Nội dung Bí kíp Thế Lực 2016 Bản PDF - Nội dung bài viết Bí kíp Thế Lực 2016 - Phân tích chi tiết về sản phẩm Bí kíp Thế Lực 2016 - Phân tích chi tiết về sản phẩm Tài liệu Bí kíp Thế Lực 2016 là bản scan đầy đủ từ cuốn sách cùng tên của tác giả Nguyễn Thế Lực. Sách gồm 216 trang, tập trung vào các kinh nghiệm giải toán đối với 3 câu phân loại trong đề thi THPT Quốc gia: Phương trình, Oxy và Bất đẳng thức. Phần nội dung tài liệu được chia thành các phần sau: I. Bí kíp phương trình - bất phương trình: 1. Giới thiệu, yêu cầu và các phương pháp cơ bản cần nắm vững 2. Basic Skill: Bao gồm cách giải phương trình cho nghiệm đẹp và nghiệm xấu, đánh giá sau liên hợp và truy ngược dấu, cũng như một số bài khó bấm máy thường liên quan đến ẩn phụ 3. Advance Skill: Kỹ năng tiên tiến như ép liên hợp và ép hàm số 4. Một số bài tập tự luyện có hướng dẫn II. Bí kíp hệ phương trình: 1. Khái quát hướng giải hệ phương trình cơ bản và kiến thức cần nắm 2. Cách tìm mối quan hệ giữa x và y bằng máy tính từ 1 phương trình 3. Dạng hệ phải kết hợp 2 phương trình 4. Một số kỹ năng bổ trợ giải hệ phương trình 5. Các bài tập rèn luyện III. Bí kíp Oxy: 1. Các kiến thức cần nhớ 2. Tư duy giải Oxy 3. Các bổ đề phụ cần biết, cách chứng minh và áp dụng 4. Chuẩn hóa Oxy 5. Các bước làm một bài toán Oxy 6. Hệ thống bài tập rèn luyện có lời giải IV. Bí kíp bất đẳng thức: 1. Kiến thức cần nhớ và hướng làm chung 2. Bấm máy cày dấu bằng "=" 3. Một số bất đẳng thức đánh giá tại biên 4. Kinh nghiệm giải bất đẳng thức 5. Hệ thống bài tập rèn luyện Đây là tài liệu cực kỳ hữu ích để học sinh tự luyện tập và nắm vững kiến thức các phần phức tạp trong môn Toán. Bí kíp Thế Lực 2016 sẽ giúp bạn hiểu rõ hơn về các phương trình, hệ phương trình, Oxy, và bất đẳng thức, từ cơ bản đến nâng cao.
Các chuyên đề luyện thi THPT Quốc gia môn Toán Nguyễn Văn Lực
Nội dung Các chuyên đề luyện thi THPT Quốc gia môn Toán Nguyễn Văn Lực Bản PDF - Nội dung bài viết Tài liệu chuyên đề luyện thi THPT Quốc gia môn Toán Nguyễn Văn Lực Tài liệu chuyên đề luyện thi THPT Quốc gia môn Toán Nguyễn Văn Lực Tài liệu chuyên đề luyện thi THPT Quốc gia môn Toán của tác giả Nguyễn Văn Lực bao gồm 372 trang. Được xây dựng dựa trên hệ thống bài tập được chọn lọc và giải chi tiết, được phân loại theo từng chuyên đề. Đây sẽ là công cụ hữu ích giúp học sinh ôn tập, nắm vững kiến thức và rèn luyện kỹ năng làm bài thi môn Toán một cách hiệu quả.
Kĩ năng sử dụng máy tính Casio trong giải toán Bùi Thế Việt
Nội dung Kĩ năng sử dụng máy tính Casio trong giải toán Bùi Thế Việt Bản PDF - Nội dung bài viết Kĩ Năng Sử Dụng Máy Tính Casio Trong Giải Toán Kĩ Năng Sử Dụng Máy Tính Casio Trong Giải Toán Trong các dụng cụ học tập được phép mang vào phòng thi trong các kỳ thi đại học, kỳ thi THPT Quốc Gia thì máy tính cầm tay là dụng cụ không thể thiếu giúp chúng ta tính toán nhanh chóng. Máy tính cầm tay không chỉ giúp chúng ta tính toán một cách chính xác mà còn là một trợ thủ đắc lực trong việc giải toán, đặc biệt là giải Phương Trình, Hệ Phương Trình, Bất Phương Trình, Bất Đẳng Thức và nhiều loại toán khác. Tác giả Bùi Thế Việt là một người rất đam mê với những kỹ năng, thủ thuật sử dụng máy tính cầm tay trong giải toán. Đã có nhiều trường hợp tác giả áp dụng những kỹ năng này vào các kỳ thi và đạt được kết quả đáng kinh ngạc. Việt chia sẻ rằng chỉ cần vài phút, anh đã giải quyết một câu Phương Trình Vô Tỷ một cách chính xác và nhanh chóng. Để sử dụng máy tính Casio một cách hiệu quả, hãy đến với chuyên đề Kỹ Năng Sử Dụng Casio Trong Giải Toán. Chuyên đề này giới thiệu 8 kỹ năng sử dụng máy tính Casio trong việc giải các loại toán khác nhau. Các thủ thuật bao gồm: Thủ thuật sử dụng Casio để rút gọn biểu thức. Thủ thuật sử dụng Casio để giải phương trình bậc 4. Thủ thuật sử dụng Casio để tìm nghiệm phương trình. Thủ thuật sử dụng Casio để phân tích đa thức thành nhân tử một ẩn. Thủ thuật sử dụng Casio để phân tích đa thức thành nhân tử hai ẩn. Thủ thuật sử dụng Casio để giải hệ phương trình. Thủ thuật sử dụng Casio để tích nguyên hàm, tích phân. Thủ thuật sử dụng Casio để giải bất đẳng thức. Đến với chuyên đề này, bạn sẽ được trải nghiệm những thủ thuật đặc biệt mà máy tính Casio có thể mang lại. Hãy học ngay để nâng cao khả năng giải toán của mình và đạt được kết quả xuất sắc trong các kỳ thi.