Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 10 lần 1 năm 2022 - 2023 trường THPT chuyên Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng môn Toán 10 thi tốt nghiệp THPT lần 1 năm học 2022 – 2023 trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc; đề thi mã đề 135 được biên soạn theo hình thức 100% trắc nghiệm, đề gồm 05 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án. Trích dẫn Đề KSCL Toán 10 lần 1 năm 2022 – 2023 trường THPT chuyên Vĩnh Phúc : + Kết quả đo chiều dài của một cây cầu được ghi là 152m ± 0,2m, điều đó có nghĩa là gì? A. Chiều dài đúng của cây cầu là 151,8m hoặc là 152,2 m. B. Chiều dài đúng của cây cầu là một số nằm trong đoạn từ 151,8m đến 152,2 m. C. Chiều dài đúng của cây cầu là một số lớn hơn 152 m. D. Chiều dài đúng của cây cầu là một số nhỏ hơn 152 m. + Bác Ba có một mảnh đất rộng 6 ha. Bác dự tính trồng cà chua và ngô cho mùa vụ sắp tới. Nếu trồng ngô thì bác Ba cần 10 ngày để trồng một ha. Nếu trồng cà chua thì bác Ba cần 20 ngày để trồng một ha. Biết rằng mỗi ha ngô sau thu hoạch bán được 30 triệu đồng, mỗi ha cà chua sau thu hoạch bán được 50 triệu đồng và bác Ba chỉ còn 100 ngày để canh tác cho kịp mùa vụ. Số tiền nhiều nhất mà bác Ba có thể thu được sau mùa vụ này là bao nhiêu. A. 180 triệu. B. 260 triệu. C. 250 triệu. D. 270 triệu. + Trong một lạng (100 gam) thịt bò chứa khoảng 26 gam protein và một lạng cá rô phi chứa khoảng 20 gam protein. Trung bình trong một ngày, một người đàn ông cần tối thiểu 52 gam protein. Gọi x, y lần lượt là số lạng thịt bò và số lạng cá rô phi mà một người đàn ông nên ăn trong một ngày. Đâu là bất phương trình bậc nhất hai ẩn x, y biểu diễn lượng protein cần thiết cho một người đàn ông trong một ngày? Biết rằng trong một ngày đó, người đàn ông chỉ dùng hai loại thịt bò và thịt cá rô phi.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra định kỳ học kỳ 1 Toán 10 trường THPT Võ Thành Trinh - An Giang
Ngày 22 tháng 10 năm 2019, trường THPT Võ Thành Trinh, tỉnh An Giang tổ chức kỳ thi kiểm tra chất lượng định kỳ môn Toán 10 giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề kiểm tra định kỳ học kỳ 1 Toán 10 trường THPT Võ Thành Trinh – An Giang có mã đề 999, đề gồm 15 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 45 phút, nội dung kiểm tra thuộc chủ đề: mệnh đề và tập hợp (Đại số 10 chương 1), hàm số bậc nhất và bậc hai (Đại số 10 chương 2), đề kiểm tra có đáp án. Trích dẫn đề kiểm tra định kỳ học kỳ 1 Toán 10 trường THPT Võ Thành Trinh – An Giang : + Cho parabol (P): y = x^2 + bx + c. a) Xác định các hệ số b, c biết (P) đi qua điểm M(2;3) và có trục đối xứng x = 3. b) Với các số b, c đã tìm được, hãy tính giá trị của hàm số tại x = −1. [ads] + Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d: y = 5x − 99 và d’: y = 5x + 11. Mệnh đề nào sau đây đúng? A. d cắt d’ nhưng không vuông góc. B. d vuông góc d’. C. d song song d’. D. d trùng với d’. + Cho hàm số y = 2x^2 − 4x có đồ thị như hình vẽ. Có tất cả giá trị nguyên của tham số m thuộc đoạn [0;5] để phương trình 2x^2 − 4x = 3m có hai nghiệm phân biệt?
Đề thi chất lượng lần 1 Toán 10 trường THPT Đào Duy Từ - Hà Nội
Đề thi chất lượng lần 1 Toán 10 trường THPT Đào Duy Từ – Hà Nội mã đề 132, đề gồm 04 trang với 25 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 90 phút, kỳ thi nhằm kiểm tra chất lượng học tập môn Toán của học sinh khối 10 trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Trích dẫn đề thi chất lượng lần 1 Toán 10 trường THPT Đào Duy Từ – Hà Nội : + Cho đường thẳng d: y = 2x +1 – 2m và parabol (P) đi qua điểm A(1;0) và có đỉnh S(3;-4). a) Lập phương trình và vẽ parabol (P). b) Chứng minh rằng đường thẳng (d) luôn đi qua một điểm cố định. c) Chứng minh rằng đường thẳng d luôn cắt (P) tại hai điểm phân biệt. [ads] + Cho hàm số y = ax^2 + bc + c (a > 0). Khẳng định nào sau đây là sai? A. Đồ thị của hàm số luôn cắt trục hoành tại hai điểm phân biệt. B. Hàm số nghịch biến trên khoảng (-vc;-b/2a). C. Hàm số đồng biến trên khoảng (-b/2a;+vc). D. Đồ thị của hàm số có trục đối xứng là đường thẳng x = -b/2a. + Cho hàm số bậc nhất y = ax + b. Tìm a và b biết rằng đồ thị hàm số cắt đường thẳng d1: y = 2x + 5 tại điểm có hoành độ bằng –2 và cắt đường thẳng d2: y = -3x + 4 tại điểm có tung độ bằng –2.
Đề kiểm tra định kỳ lần 2 Toán 10 năm 2019 - 2020 trường THPT chuyên Bắc Ninh
Đề kiểm tra định kỳ lần 2 Toán 10 năm học 2019 – 2020 trường THPT chuyên Bắc Ninh gồm có hai đề riêng biệt: đề dành cho các lớp 10 chuyên Vật lý – chuyên Hóa học – chuyên Tin học và đề dành cho các lớp 10 chuyên Ngữ Văn – chuyên Sinh học – chuyên Tiếng Anh, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Trích dẫn đề kiểm tra định kỳ lần 2 Toán 10 năm 2019 – 2020 trường THPT chuyên Bắc Ninh : + Cho hàm số y = -x^2 + (2m – 3)x + 1 – m^2 (trong đó m là tham số). a) Lập bảng biến thiên và vẽ đồ thị hàm số với m = 2. b) Tìm tất cả giá trị của m đề đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác O và nằm khác phía nhau đối với điểm O. c) Tìm điều kiện của tham số m để hàm số đã cho nghịch biến trên khoảng (0;2019). + Trên mặt phẳng tọa độ Oxy cho bốn điểm A(0;1), B(-1;3), C(5;6), D(4;3). a ) Chứng tỏ rằng bốn điểm đã cho tạo thành một hình thang có đáy là AD và BC. b) Biết I là điểm thỏa mãn 2.IA + 2.IB + 3.IC + 3.ID = 0. Chứng minh I nằm trên đường trung bình của hình thang tạo bởi bốn điểm đã cho. + Cho ba số thực không âm a, b, c thỏa mãn a + b + c = 3 và không có số nào lớn hơn 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A = √(1 + a) + √(1 + b) + √(1 + c).
Đề kiểm tra Toán 10 năm học 2019 - 2020 trường THPT Đống Đa - Hà Nội
giới thiệu đến quý thầy, cô cùng các em học sinh đề kiểm tra giữa học kì 1 môn Toán 10 năm học 2019 – 2020 trường THPT Đống Đa – Hà Nội, đề gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 60 phút. Trích dẫn đề kiểm tra Toán 10 năm học 2019 – 2020 trường THPT Đống Đa – Hà Nội : + Xét tính chẵn lẻ của hàm số y = 2x^3 – 3x. + Tìm m sao cho hàm số sau là hàm số chẵn: y = x^4 – 3x^2 + (m – 2)x + 4m – 1. + Cho tam giác ABC với trọng tâm G. a) Chứng minh rằng với mọi điểm D bất kì ta luôn có AC + DA + BD = AD – CD + BA. b) Tìm tập hợp các điểm M thỏa mãn |AB + MA| = |AB – AC|. c) Gọi I là điểm đối xứng với A qua B, đường thẳng IG cắt AC tại E. Tính tỉ số EA/EC.