Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn HSG Toán 12 cấp trường năm 2019 - 2020 THPT chuyên Nguyễn Trãi - Hải Dương

Ngày 07 tháng 09 năm 2019, trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương tổ chức kỳ thi chọn đội tuyển học sinh giỏi môn Toán 12 cấp trường năm học 2019 – 2020. Đề chọn HSG Toán 12 cấp trường năm 2019 – 2020 THPT chuyên Nguyễn Trãi – Hải Dương gồm 01 trang với 06 bài toán tự luận, thời gian làm bài 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề chọn HSG Toán 12 cấp trường năm 2019 – 2020 THPT chuyên Nguyễn Trãi – Hải Dương : + Điền vào mỗi ô của bảng vuông 7 x 7 các số tự nhiên từ 1 đến 49 như hình vẽ. Mỗi lần, được phép chọn 1 ô của bảng và đồng thời tăng số trong ô đó thêm 1 rồi giảm mỗi số trong hai ô nào đó kề với nó đi 1, hoặc giảm số trong ô đó đi 1 và tăng mỗi số trong hai ô kề với nó thêm 1 (hai ô kề nhau là hai ô chung cạnh). Hỏi có thể đưa tất cả các số trong bảng về bằng nhau sau một số hữu hạn bước được hay không? [ads] + Cho tam giác ABC nội tiếp đường tròn (O). Một đường tròn (K) qua B và C cắt các đoạn thẳng CA và AB lần lượt tại E và F. Gọi BE cắt CF tại H. M là trung điểm BC và tiếp tuyến tại B và C của đường tròn ngoại tiếp tam giác BHC cắt nhau tại I. Gọi S là hình chiếu của A trên IH và D là giao của IH với BC. Chứng minh rằng đường tròn ngoại tiếp tam giác SMD tiếp xúc với đường tròn (O). + Cho dãy số (an) thỏa mãn đồng thời hai điều kiện 3a_n+1≥ a_n và 6a_n+1 + a_n-1 ≤ 5a_n với mọi n ≥ 2 và n thuộc N. Chứng minh rằng dãy (an) có giới hạn hữu hạn và tìm giới hạn đó.

Nguồn: toanmath.com

Đọc Sách

Đề chọn học sinh giỏi lớp 12 môn Toán chuyên năm 2021 2022 sở GD ĐT Vĩnh Phúc
Nội dung Đề chọn học sinh giỏi lớp 12 môn Toán chuyên năm 2021 2022 sở GD ĐT Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán lớp 12 chương trình THPT chuyên năm học 2021 – 2022 sở GD&ĐT Vĩnh Phúc.
Đề chọn đội tuyển tỉnh môn Toán năm 2021 2022 trường chuyên Lê Quý Đôn Khánh Hòa
Nội dung Đề chọn đội tuyển tỉnh môn Toán năm 2021 2022 trường chuyên Lê Quý Đôn Khánh Hòa Bản PDF Đề chọn đội tuyển tỉnh môn Toán năm 2021 – 2022 trường chuyên Lê Quý Đôn – Khánh Hòa gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút; kỳ thi được diễn ra vào ngày 05 tháng 10 năm 2021.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD ĐT Lâm Đồng
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD ĐT Lâm Đồng Bản PDF Thứ Tư ngày 22 tháng 09 năm 2021, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi chọn học sinh vào đội tuyển bồi dưỡng thi học sinh giỏi Quốc gia môn Toán năm học 2021 – 2022. Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Lâm Đồng gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2021 2022 sở GD ĐT Đồng Tháp
Nội dung Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2021 2022 sở GD ĐT Đồng Tháp Bản PDF Sáng Chủ Nhật ngày 20 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Đồng Tháp tổ chức kỳ thi chọn đội tuyển học sinh giỏi Toán dự thi cấp Quốc gia năm học 2021 – 2022. Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2021 – 2022 sở GD&ĐT Đồng Tháp gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển thi HSG Toán Quốc gia năm 2021 – 2022 sở GD&ĐT Đồng Tháp : + Cho các số thực x, y, z thỏa mãn: x + y + z = -1 và x3 + y3 + z3 = 11. a) Biểu diễn xz theo y. b) Chứng minh rằng trong ba số x, y, z có ít nhất một số thuộc nửa khoảng [-2;-1). + Cho dãy số (an) xác định như sau. Chứng minh rằng với mỗi số tự nhiên n: a) 2an – 1 là số chính phương. b) an viết được dưới dạng tổng bình phương của hai số tự nhiên. + Có 2021 viên bi, đựng trong 100 cái hộp. Mỗi lần, cho phép lấy 2 viên bi, 2 viên bi đó thuộc vào tối đa 2 hộp và bỏ chúng vào 1 hộp khác. Chứng minh rằng sau một số bước có thể bỏ tất cả các viên bi vào cùng 1 hộp.