Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở GDĐT Lạng Sơn

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở Giáo dục và Đào tạo tỉnh Lạng Sơn; kỳ thi được diễn ra vào thứ Ba ngày 27 tháng 02 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101 102 103 104 105 106 107 108 và lời giải chi tiết các bài toán vận dụng – vận dụng cao. Ma trận Đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở GD&ĐT Lạng Sơn : + Bài toán chỉ sử dụng tổ hợp. + Xác suất của bài toán chọn nhóm. + Giới hạn phân thức có bậc tử bằng bậc mẫu. + Góc giữa cạnh bên với mặt đáy. + KC từ chân đường cao đến mặt xiên trong hình chóp. + Tìm cực trị của hàm số khi biết đồ thị hàm số. + Tìm cực trị của hàm số khi biết BBT. + Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước. + Tìm số điểm cực trị của hàm số |f(u)| khi biết đồ thị, BBT f’(x). + Tìm tiệm cận f(x) dựa vào BBT f(x). + Tìm đường tiệm cận, số đường TC của hs. + Nhận dạng BBT hàm số bậc 3. + Tìm tọa độ giao điểm của đồ thị hai hs khi biết f(x) và g(x). + Tìm số nghiệm của pt f(x) = a khi biết đồ thị, BBT f(x). + Tập xác định của hàm số lũy thừa có số mũ hữu tỷ. + Dùng công thức biến đổi cơ số logarit rút gọn biểu thức. + Tính đạo hàm của hàm số logarit. + Tìm Min, Max của biểu thức khi có đk f(u) = f(v) chứa logarit. + Tìm số giá trị nguyên của y để PT Loga có nghiệm thỏa mãn đk bằng PP đánh giá. + GBPT Mũ cơ bản. + GBPT Logarit cơ bản. + GBPT Loga dạng tích. + Nguyên hàm cơ bản của hàm số đa thức. + Nguyên hàm cơ bản của hàm lượng giác. + Định nghĩa của tích phân. + Tính chất của tích phân. + Tích phân của hàm ẩn bằng PP từng phần. + Tích phân của hàm ẩn bằng tạo ra công thức đạo hàm tích, thương. + Biết f’(x), tính tích phân f(x). + Ý nghĩa hình học của tích phân. + Tìm khoảng đơn điệu của hàm số khi biết f’(x), BXD f’(x). + Xét tính đơn điệu của hàm số f(x) khi biết đồ thị, BBT f’(x). + Áp dụng công thức tính thể tích khối chóp. + Áp dụng công thức tính thể tích khối lăng trụ. + Tính chiều cao, khoảng cách bằng thể tích. + Thể tích khối lăng trụ đứng có góc giữa hai mp. + Tính V, Sxq hoặc Stp khi biết R, h, l. + Tính Sxq hoặc Stp khi biết R và h. + Tính V, S khi biết R. + Bài toán kết hợp hình cầu với hình trụ. + Xác định tọa độ vectơ qua phép cộng, trừ vectơ. + Tính độ dài đoạn thẳng khi biết hai đầu mút, độ dài vectơ. + Xác định tọa độ tâm, R, S, V của MC khi biết PTMC. + Viết PTMC khi biết tâm và đi qua 1 điểm. + Nhận diện phương trình mặt cầu. + Xác định VTPT khi biết PTMP. + Nhận diện điểm thuộc MP. + Viết PTMP trung trực của đoạn thẳng. + Tính KC từ điểm đến MP. + Viết PTMP chắn hai đoạn theo tỉ số.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Hoa Lư A - Ninh Bình lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Hoa Lư A – Ninh Bình gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, kỳ thi diễn ra vào ngày 28 tháng 10 năm 2017. Trích dẫn đề thi : + Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hàm số y = f'(x) trên R như hình bên. Mệnh đề nào dưới đây đúng? A. Hàm số y = f(x) có 1 điểm cực đại và 1 điểm cực tiểu B. Hàm số y = f(x) có 2 điểm cực đại và 2 điểm cực tiểu C. Hàm số y = f(x) có 1 điểm cực đại và 2 điểm cực tiểu D. Hàm số y = f(x) có 2 điểm cực đại và 1 điểm cực tiểu [ads] + Cho hàm số bậc bốn y = ax^4 + bx^2 + c (a ≠ 0) có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng? A. a > 0, b < 0, c < 0 B. a > 0, b > 0, c < 0 C. a > 0, b < 0, c > 0 D. a < 0, b > 0, c < 0 + Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 6 điểm phân biệt; trên đường thẳng b lấy 5 điểm phân biệt. Chọn ngẫu nhiên 3 điểm trong các điểm đã cho trên hai đường thẳng a và b . Tính xác xuất để 3 điểm được chọn tạo thành một tam giác. A. 5/11 B. 60/169 C. 2/11 D. 9/11
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Thái Bình lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Thái Bình lần 1 gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi thử có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Độ giảm huyết áp của một bệnh nhân được cho bởi công thức G(x) = 0,035x^2(15 – x), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất. A. x = 8 B. x = 10 C. x= 15 D. x = 7 [ads] + Một tấm kẽm hình vuông ABCD có cạnh bằng 30cm. Người ta gập tấm kẽm theo hai cạnh EF và GH cho đến khi AD và BC trùng nhau như hình vẽ bên để được một hình lăng trụ khuyết hai đáy. Giá trị của x để thể tích khối lăng trụ lớn nhất là? A. x = 5 cm B. x = 9 cm C. x = 8 cm D. x = 10 cm + Cho hàm số y = f(x) có đao hàm trên R. Đường cong trong hình vẽ bên là đồ thị của hàm số y = f'(x), (y = f'(x) liên tục trên R). Xét hàm số g(x) = f(x^2 – 2). Mệnh đề nào dưới đây sai? A. Hàm số g(x) nghịch biến trên (−∞; −2) B. Hàm số g(x) đồng biến trên (2; +∞) C. Hàm số g(x) nghịch biến trên (−1; 0) D. Hàm số g(x) nghịch biến trên (0; 2)
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Quang Trung - Bình Phước lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Quang Trung – Bình Phước lần 1 gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi : + Chọn phát biểu đúng. A. Các hàm số y = sin x, y = cos x, y = cot x đều là hàm số chẵn B. Các hàm số y = sin x, y = cos x, y = cot x đều là hàm số lẻ C. Các hàm số y = sin x, y = cot x, y = tan x đều là hàm số chẵn D. Các hàm số y = sin x, y = cot x, y = tan x đều là hàm số lẻ + Trên tập số phức, cho phương trình: az^2 + bz + c = 0 (a, b, c ∈ R). Chọn kết luận sai. A. Nếu b = 0 thì phương trình có hai nghiệm mà tổng bằng 0 B. Nếu Δ = b^2 – 4ac < 0 thì phương trình có hai nghiệm mà modun bằng nhau C. Phương trình luôn có hai nghiệm phức là liên hợp của nhau D Phương trình luôn có nghiệm + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. Thiết diện của hình chóp cắt bởi mặt phẳng (MNK) là một đa giác (H). Hãy chọn khẳng định đúng. A. (H) là một hình thang B. (H) là một ngũ giác C. (H) là một hình bình hành D. (H) là một tam giác
Đề thi thử THPT Quốc gia 2018 môn Toán - Đoàn Trí Dũng, Hà Hữu Hải lần 4
Đề thi thử THPT Quốc gia 2018 môn Toán lần 4 do thầy Đoàn Trí Dũng, Hà Hữu Hải biên soạn, đề thi gồm 50 câu hỏi trắc nghiệm, có đáp án và lời giải chi tiết các câu hỏi phân loại . Trích dẫn đề thi : + Cho hình trụ có các đáy là hai hình tròn tâm I và I’, bán kính đáy bằng chiều cao và bằng a. Trên đường tròn đáy tâm I lấy điểm A, trên đường tròn đáy tâm I’ lấy điểm B sao cho AB = 2a. Tính tỷ số thể tích của khối trụ và khối tứ diện II’AB. + Khi nuôi cá thí nghiệm trong hồ, một nhà sinh vật học thấy rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ cân nặng P(n) = 480 – 20n (gam). Hỏi phải thả bao nhiêu con cá trên một đơn vị diện tích của mặt hồ để sau một vụ thu hoạch được nhiều cá nhất? [ads] A. 10 B. 12 C. 16 D. 24 + Một chiếc thùng đựng nước hình trụ có bán kính đáy 20cm, bên trong đựng một lượng nước. Biết rằng khi nghiêng thùng sao cho đường sinh của hình trụ tạo với mặt đáy góc 45 độ cho đến khi nước lặng, thì mặt nước chạm vào hai điểm A và B nằm trên hai mặt đáy như hình vẽ bên. Hỏi thùng đựng nước có thể tích là bao nhiêu cm3?A. 16000π B. 12000π C. 8000π D. 6000π