Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 4 năm 2022 - 2023 trường Lương Thế Vinh - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 lần 4 năm học 2022 – 2023 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 lần 4 năm 2022 – 2023 trường Lương Thế Vinh – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Tháng thứ nhất hai tổ sản xuất được 500 sản phẩm. Sang tháng thứ hai, do cải tiến kĩ thuật, tổ 1 làm vượt mức 10%, tổ 2 làm vượt mức 15% so với tháng thứ nhất. Vì vậy, tháng thứ hai cả hai tổ đã làm được 564 sản phẩm. Hỏi trong tháng thứ nhất mỗi tổ sản xuất được bao nhiêu sản phẩm? + Trục lăn của một cái lăn sơn có dạng một hình trụ. Đường kính của đường tròn đáy là 8cm, chiều dài trục lăn là 30cm. Sau khi lăn được 10 vòng thì trục lăn tạo trên sân phẳng một diện tích là bao nhiêu? (lấy 3,14). + Cho tam giác ABC có ba góc nhọn, đường cao AD. Đường tròn (O) đường kính BC cắt AC tại E, AD cắt BE tại H. 1) Chứng minh CDHE là tứ giác nội tiếp. 2) Gọi giao điểm của CH với AB là F. Chứng minh F thuộc đường tròn (O) và DA là phân giác của góc EDF. 3) Kẻ các tiếp tuyến AM, AN với (O) (M, N là tiếp điểm), AO cắt MN tại K, đoạn thẳng AH cắt (O) tại P. Gọi I là tâm đường tròn ngoại tiếp OPK. Chứng minh B, C, I thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Lào Cai; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Lào Cai : + Một người dự định đi xe đạp từ A đến B cách nhau 40km trong một thời gian nhất định. Sau khi đi được 20km người đó đã dừng lại nghỉ 20 phút. Do đó để đến B đúng thời gian dự định người đó phải tăng vận tốc thêm 3km/h. Tính vận tốc dự định của người đó. + Cho tam giác nhọn ABC không cân (AB < AC) có đường tròn ngoại tiếp (O; R) và đường tròn nội tiếp (I; r). Đường tròn (I; r) tiếp xúc với các cạnh BC CA AB lần lượt tại D, E, F. Kéo dài AI cắt BC tại M và cắt đường tròn (O;R) tại điểm thứ 2 là N (N khác A). Gọi Q là giao điểm của AI và FE. Nối AD cắt đường tròn (I; r) tại điểm thứ 2 là P (P khác D). Kéo dài DQ cắt đường tròn (I; r) tại điểm thứ 2 là T (T khác D). Chứng minh rằng. + Cho p là số nguyên tố sao cho tồn tại các số nguyên dương x y thỏa mãn 3 3 x y p xy 6 8. Tìm giá trị lớn nhất của p.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 - 2022 sở GDĐT Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Hải Phòng; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm (bảng chính thức do sở Giáo dục và Đào tạo thành phố Hải Phòng công bố). Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Cho hai phương trình (ẩn x; tham số a b). Tìm tất cả các cặp số thực (a;b) để mỗi phương trình trên đều có hai nghiệm phân biệt thỏa mãn 21 0 xxx, trong đó 0 x là nghiệm chung của hai phương trình và 1 2 x x, lần lượt là hai nghiệm còn lại của phương trình (1), phương trình (2). + Cho tam giác nhọn ABC (AB AC) nội tiếp đường tròn (O). Gọi I là tâm đường tròn bàng tiếp trong góc BAC của tam giác ABC. Đường thẳng AI cắt BC tại D, cắt đường tròn (O) tại EE A. a) Chứng minh E là tâm đường tròn ngoại tiếp tam giác IBC. b) Kẻ IH vuông góc với BC tại H. Đường thẳng EH cắt đường tròn (O) tại F (F E). Chứng minh AF FI. c) Đường thẳng FD cắt đường tròn (O) tại MM F, đường thẳng IM cắt đường tròn (O) tại N (N M). Đường thẳng qua O song song với FI cắt AI tại J, đường thẳng qua J song song với AH cắt IH tại P. Chứng minh ba điểm NEP thẳng hàng. + Cho tập hợp X = {1;2;3;…;101}. Tìm số tự nhiên n (n ≥ 3) nhỏ nhất sao cho với mọi tập con A tùy ý gồm n phần tử của X đều tồn tại 3 phần tử đôi một phân biệt abc A thỏa mãn abc.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Hà Nam; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm (bảng chính thức do sở Giáo dục và Đào tạo tỉnh Hà Nam công bố). Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Hà Nam : + Cho đường tròn O đường kính AB R 2. Gọi ∆ là tiếp tuyến của O tại A. Trên ∆ lấy điểm M sao cho MA R. Qua M vẽ tiếp tuyến MC (C thuộc đường tròn O, C khác A). Gọi H và D lần lượt là hình chiếu vuông góc của C trên AB và AM. Gọi d là đường thẳng đi qua điểm O và vuông góc với AB. Gọi N là giao điểm của d và BC. 1. Chứng minh OM // BN và MC = NO. 2. Gọi Q là giao điểm của MB và CH, K là giao điểm của AC và OM. Chứng minh đường thẳng QK đi qua trung điểm của đoạn thẳng BC. 3. Gọi F là giao điểm của QK và AM, E là giao điểm CD và OM. Chứng minh tứ giác FEQO là hình bình hành. Khi M thay đổi trên ∆, tìm giá trị lớn nhất của QF EO. + Giải phương trình 3 2 xyxz 3 2021 với x y và z là các số nguyên. + Cho hình vuông ABCD có độ dài cạnh bằng 1. Bên trong hình vuông người ta lấy tùy ý 2021 điểm phân biệt 1 2 2021 AA A … sao cho 2025 điểm 1 2 2021 ABCDA A A … không có ba điểm nào thẳng hàng. Chứng minh rằng từ 2025 điểm trên luôn tồn tại 3 điểm là 3 đỉnh của hình tam giác có diện tích không quá 1.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Đồng Nai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Đồng Nai; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Đồng Nai : + Trong 2021 số nguyên dương đầu tiên, có bao nhiêu số không chia hết cho 7 và không chia hết cho 11? + Tìm đa thức bậc ba P x x ax bx c 3 2 với a b c là các hệ số thực. Biết P(x) chia hết cho (x – 1) và P(x) chia cho (x – 2) và (x – 3) đều có số dư là 6. + Tìm các số nguyên x và y thỏa mãn bất đẳng thức.