Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kỳ 1 Toán 10 (chuyên) năm 2022 - 2023 trường chuyên Hà Nội - Amsterdam

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 1 môn Toán 10 (chuyên Toán) năm học 2022 – 2023 trường THPT chuyên Hà Nội – Amsterdam; đề thi gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn Đề học kỳ 1 Toán 10 (chuyên) năm 2022 – 2023 trường chuyên Hà Nội – Amsterdam : + Tìm các giá trị của tham số m, n để phương trình sau có 3 nghiệm phân biệt lập thành một cấp số cộng x3 – 3×2 + (10 – 2m)x + n + 4 = 0. + Trong mặt phẳng cho tam giác ABC không suy biến, với trực tâm H, nội tiếp đường tròn (O). Biết AB = 2a, BC = 3a và CA = 4a. 1) Chứng minh rằng OH = OA + OB + OC. 2) Tính cosin các góc của tam giác và tính độ dài bán kính đường tròn ngoại tiếp của tam giác. 3) Tính theo a độ dài của đoạn thẳng OH. + Cho tam giác ABC có các góc thỏa mãn tanA/2 + tanB/2 + tanC/2 = 3. Hãy tính số đo các góc của tam giác.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 1 Toán 10 năm 2019 - 2020 trường THPT Trường Chinh - TP HCM
Đề thi học kỳ 1 Toán 10 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Viết phương trình đường thẳng d biết d đi qua điểm M(2;3) và song song với đường thẳng delta: y = 3x + 1. + Cho tam giác ABC có A(2;3); B(-1;-1); C(6;0). a) Tính độ dài AB; AC; BC suy ra tam giác ABC vuông cân. b) Tìm tọa độ điểm M thỏa MA + MB + MC = BC. + Cho tam giác ABC có AB = 5a, AC = 7a, góc A bằng 120 độ. Tính BC và diện tích tam giác ABC.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Văn Cừ - TP HCM
Đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Văn Cừ – TP HCM gồm 02 trang với 20 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Văn Cừ – TP HCM : + Xác định parabol (P): y = x^2 + bx + c biết hoành độ đỉnh bằng 2 và đi qua điểm A(-2;-3). + Tìm tập xác định của hàm số f(x) = (2 + x)/(-3x^2). + Cho (P): y = -x^2 – 4x + 3. Tìm tọa độ đỉnh của parabol.
Đề thi cuối học kì 1 Toán 10 năm học 2019 - 2020 trường Việt Úc - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi cuối học kì 1 Toán 10 năm học 2019 – 2020 trường Việt Úc – TP HCM; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang chấm điểm. Ma trận đề thi cuối học kì 1 Toán 10 năm học 2019 – 2020 trường Việt Úc – TP HCM:
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường Tạ Quang Bửu - Hà Nội
Thứ Sáu ngày 06 tháng 12 năm 2019, trường THCS và THPT Tạ Quang Bửu, thành phố Hà Nội tổ chức kiểm tra chất lượng cuối học kì 1 môn Toán lớp 10 năm học 2019 – 2020. Đề thi học kì 1 Toán 10 năm 2019 – 2020 trường Tạ Quang Bửu – Hà Nội được biên soạn theo dạng đề tự luận, đề gồm có 01 trang với 05 bài toán, học sinh có 90 phút để hoàn thành bài thi. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường Tạ Quang Bửu – Hà Nội : + Cho hàm số y = -x^2 + 4x + 5 có đồ thị (P). a) Lập bảng biến thiên và vẽ đồ thị (P) của hàm số. b) Tìm k để phương trình |-x^2 + 4x + 5| = k – 2 có 4 nghiệm phân biệt. [ads] + Cho phương trình (m – 2)x^2 + (2m – 1)x + m = 0. a) Giải phương trình khi m = 0. b) Với giá trị nào của m thì phương trình có hai nghiệm x1, x2 thỏa mãn x1 + x2 = -3. + Trong hệ tọa độ Oxy cho ba điểm A(3;-2), B(5;2), C(0;-3). a) Chứng minh ba điểm A, B, C không thẳng hàng. Tính BC. b) Tính AB.AC và cos ABC. c) Tìm tọa độ điểm D sao cho DA – 2DB = 0. d) Tìm tọa độ điểm M trên trục Oy sao cho |MB + MC| đạt giá trị nhỏ nhất.