Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm học 2018 2019 trường THPT chuyên Nguyễn Huệ Hà Nội

Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm học 2018 2019 trường THPT chuyên Nguyễn Huệ Hà Nội Bản PDF Thứ Tư ngày 17 tháng 04 năm 2019, trường THPT chuyên Nguyễn Huệ – Hà Nội tổ chức kỳ thi học kỳ 2 môn Toán lớp 12 năm học 2018 – 2019, kỳ thi không chỉ kiểm tra các kiến thức Toán lớp 12 giai đoạn học kỳ 2, mà kiểm tra toàn bộ các kiến thức Toán THPT – đây là điều được khá nhiều trường lựa chọn, trong bối cảnh kỳ thi THPT Quốc gia môn Toán năm 2019 do Bộ Giáo dục và Đào tạo tổ chức đã cận kề. Đề thi HK2 Toán lớp 12 năm học 2018 – 2019 trường THPT chuyên Nguyễn Huệ – Hà Nội có mã đề 130 gồm 07 trang, đề được biên soạn với hình thức và cấu trúc giống với đề thi thử THPT Quốc gia môn Toán năm 2019, hi vọng đề thi này sẽ giúp ích cho các em học sinh lớp 12 trong quá trình ôn tập chuẩn bị cho kỳ thi học kỳ 2 Toán lớp 12 và kỳ thi THPT Quốc gia 2019 môn Toán. [ads] Trích dẫn đề thi HK2 Toán lớp 12 năm học 2018 – 2019 trường THPT chuyên Nguyễn Huệ – Hà Nội : + Từ một tấm thép phẳng hình chữ nhật, người ta muốn làm một chiếc thùng đựng dầu hình trụ bằng cách cắt ra hai hình tròn bằng nhau và một hình chữ nhật (phần tô đậm) sau đó hàn kín lại, như trong hình vẽ dưới đây. Hai hình tròn làm hai mặt đáy, hình chữ nhật làm thành mặt xung quanh của thùng đựng dầu (vừa đủ). Biết thùng đựng dầu có thể tích bằng 50, 24 lít (các mối ghép nối khi gò hàn chiếm diện tích không đáng kể. Lấy π = 3,14). Diện tích của tấm thép hình chữ nhật ban đầu gần với giá trị nào sau đây nhất? + Người ta gọt một khối lập phương gỗ để lấy khối tám mặt đều nội tiếp nó (tức là khối có các đỉnh là các tâm của các mặt khối lập phương). Biết các cạnh của khối lập phương bằng a. Hãy tính thể tích của khối tám mặt đều đó. + Có 15 cuốn sách gồm 4 cuốn sách Toán, 5 cuốn sách Lý và 6 cuốn sách Hóa. Các cuốn sách đôi một khác nhau. Thầy giáo chọn ngẫu nhiên 8 cuốn sách để làm phần thưởng cho một học sinh. Tính xác suất để số cuốn sách còn lại của thầy còn đủ 3 môn. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 12 năm 2019 2020 trường THPT Phú Lương Thái Nguyên
Ngày … tháng 06 năm 2020, trường THPT Phú Lương, tỉnh Thái Nguyên tổ chức kỳ thi kiểm tra đánh giá chất lượng môn Toán 12 giai đoạn cuối học kì 2 năm học 2019 – 2020, đánh dấu kết thúc một năm học với nhiều “biến động” do tình hình dịch bệnh. Đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Phú Lương – Thái Nguyên mã đề 122 gồm có 04 trang, đề được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 32 câu, chiếm 08 điểm, phần tự luận gồm 04 câu, chiếm 02 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết các mã đề 122, 301, 125, 305. 1. TRẮC NGHIỆM + Định nghĩa nguyên hàm. + Phương pháp tính nguyên hàm. + Tính chất tích phân. + Tính chất tích phân. + Tích phân đổi biến số. + Phương pháp tính tích phân từng phần. + Tính diện tích hình phẳng, thể tích khối tròn xoay. + Tính tích phân hàm ẩn dựa vào định nghĩa, tính chất. + Tính tích phân hàm ẩn đổi biến hoặc từng phần. + Tìm môđun số phức hoặc điểm biểu diễn số phức. + Tìm số phức liên hợp. + Tìm tập hợp điểm biểu diễn số phức. + Tìm số phức nghịch đảo, phép chia hai số phức. + Tìm tập hợp điểm biểu diễn hình học của số phức. + Tìm điều kiện để hai số phức bằng nhau. + Giải phương trình bậc hai. + Tìm hình chiếu một điểm xuống các mặt phẳng tọa độ, hoặc các trục tọa độ, tìm tọa độ các phép toán vectơ, góc giữa hai vec tơ, độ dài đoạn thẳng, tích vô hướng, có hướng của hai vec tơ, điều kiện hai vec tơ vuông góc, cùng phương, ba điểm thẳng hàng. + Tìm tọa độ các phép toán vec tơ, góc giữa hai vec tơ, độ dài đoạn thẳng, tích vô hướng, có hướng của hai vec tơ, điều kiện hai vec tơ vuông góc, cùng phương, ba điểm thẳng hàng. [ads] + Tìm tâm và bán kính mặt cầu. + Viết phương trình mặt cầu. + Viết phương trình mặt phẳng (VTPT tìm được ngay), hoặc theo đoạn chắn. + Viết phương trình mặt phẳng đi qua ba điểm hoặc tìm VTPT qua tích có hướng. + Viết phương trình mặt phẳng dựa vào điều kiện cho trước (VTPT tìm thông qua các điều kiện song song vuông góc đường và mặt). + Viết phương trình mặt phẳng dựa vào điều kiện cho trước (VTPT tìm thông qua các điều kiện song song vuông góc đường và mặt). + Điểm thuộc đường thẳng. + Tìm một vec tơ chỉ phương của đương thẳng khi biết phương trình tham số. + Tìm một PTTS đường thẳng khi biết điểm và VTCP (phải kiểm tra hai điều kiện). + Viết phương trình đường thẳng dựa vào điều kiện cho trước (VTCP tìm dễ dàng). + Tìm tọa độ giao điểm hai đường thẳng, tìm điều kiện hai đường thẳng cắt nhau. + Chứng minh rằng hai đường thẳng chéo nhau. + Xét vị trí tương đối đường thẳng và mặt phẳng. + Viết phương trình đường thẳng. 2. TỰ LUẬN + Tính tích phân (đổi biến, hoặc từng phần). + Tìm số phức thỏa mãn điều kiện cho trước. + Viết phương trình đường thẳng hoặc mặt phẳng. + Tìm GTLN và GTNN của môđun số phức.
Đề thi học kỳ 2 Toán 12 năm học 2019 - 2020 trường THPT Kim Liên - Hà Nội
Thứ Tư ngày 17 tháng 06 năm 2020, trường THPT Kim Liên, quận Đống Đa, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 12 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi học kỳ 2 Toán 12 năm học 2019 – 2020 trường THPT Kim Liên – Hà Nội mã đề 111 gồm 07 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, nội dung thi nằm trong chương trình Toán 12 học kỳ 2 theo phân phối chương trình môn Toán, đề thi có đáp án mã đề 111, 112, 113, 114. Trích dẫn đề thi học kỳ 2 Toán 12 năm học 2019 – 2020 trường THPT Kim Liên – Hà Nội : + Trong không gian với hệ trục toạ độ Oxyz, cho 3 điểm A(1;2;3), B(0;1;-3), C(1;0;-1). Điểm M thuộc (P): x + y + z – 3 = 0 sao cho giá trị của biểu thức T = MA^2 + 3MB^2 – 2MC^2 nhỏ nhất. Khi đó điểm M cách (Q): 2x – 2y – z + 8 = 0 một khoảng bằng? [ads] + Cho hàm số y = f(x) liên tục trên và thỏa mãn f5(x) + 2020f(x) = -x^3 – 3x^2 – 2x. Tích phân của f(x)dx với x từ -2022 đến 2020 có giá trị thuộc khoảng nào sau đây? + Trong không gian Oxyz, cho đường thẳng delta: (x – 1)/2 = (y + 1)/2 = (z – 1)/1 và mặt phẳng (P): 2x – 2y – z – 4 = 0. Đường thẳng nằm trong mặt phẳng (P) đồng thời cắt và vuông góc với delta có phương trình là?
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Trần Hưng Đạo - Nam Định
Thứ Ba ngày 16 tháng 06 năm 2020, trường THPT Trần Hưng Đạo, tỉnh Nam Định tổ chức kỳ thi kiểm tra chất lượng học kì 2 môn Toán lớp 12 năm học 2019 – 2020. Đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Trần Hưng Đạo – Nam Định mã đề 147 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, nội dung đề tương tự đề tham khảo tốt nghiệp THPT 2020 môn Toán, đề thi có đáp án. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Trần Hưng Đạo – Nam Định : + Cho hàm số f(x) = (x^4 + mx + m)/(x + 1) (m là tham số thực). Gọi S là tập hợp tất cả các giá trị nguyên của m sao cho max |f(x)| ≥ 2.min |f(x)| với x thuộc [1;2]. Số phần tử của S là? [ads] + Cho hàm số bậc bốn y = f(x) có đồ thị trong hình bên. Số nghiệm thuộc [0;2pi] của phương trình |f(cosx^2 – sinx^2)| = 1 bằng? + Cho hình trụ có đáy là hai đường tròn tâm O và O’ , bán kính bằng chiều cao và bằng a. Trên đường tròn tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B sao cho AB = 2a. Thể tích của khối tứ diện OO’AB bằng?
Đề thi HK2 Toán 12 năm 2019 - 2020 trường THPT An Lương Đông - TT Huế
Ngày … tháng 06 năm 2020, trường THPT An Lương Đông, tỉnh Thừa Thiên Huế tổ chức kỳ thi kiểm tra chất lượng cuối học kỳ 2 môn Toán lớp 12 năm học 2019 – 2020. Đề thi HK2 Toán 12 năm 2019 – 2020 trường THPT An Lương Đông – TT Huế mã đề 001 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi HK2 Toán 12 năm 2019 – 2020 trường THPT An Lương Đông – TT Huế : + Trên tập số phức, cho A và B là hai điểm biểu diễn hình học số phức theo thứ tự z0, z1 khác 0 và thỏa mãn đẳng thức z0^2 + z1^2 = z0z1. Khẳng định nào sau đây là đúng: A. Tam giác OAB đều. B. Tam giác OAB vuông không cân. C. Tam giác OAB vuông cân. D. Tam giác OAB cân không đều. [ads] + Khẳng định nào sau đây sai? A. Môđun của số phức z là một số thực dương. B. Môđun của số phức z = a + bi (a và b ∈ R) là √(a^2 + b^2). C. Môđun của số phức z là một số thực. D. Môđun của số phức z là một số thực không âm. + Trong mặt phẳng tọa độ Oxy, Gọi A và B lần lượt là các điểm biểu diễn hình học của các số phức z1 = 1 + 2i và z2 = 5 – i. Độ dài đoạn thẳng AB bằng?