Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập hàm số và đồ thị Toán 8 Chân Trời Sáng Tạo

Tài liệu gồm 118 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bỉnh Khôi, phân dạng và tuyển chọn các bài tập chuyên đề hàm số và đồ thị trong chương trình môn Toán 8 bộ sách Chân Trời Sáng Tạo, có đáp án và lời giải chi tiết. MỤC LỤC : Chương 5 HÀM SỐ VÀ ĐỒ THỊ 2. Bài 1 KHÁI NIỆM HÀM SỐ 2. A. Trọng tâm kiến thức 2. 1 Khái niệm hàm số 2. 2 Giá trị của hàm số 2. B. Các dạng bài tập 2. + Dạng 1 Hàm số, bảng giá trị của hàm số 2. + Dạng 2 Tính giá trị của hàm số khi biết giá trị của biến số, và ngược lại 4. + Dạng 3 Vận dụng 6. C. Bài tập vận dụng 8. Bài 2 KHÁI NIỆM HÀM SỐ VÀ ĐỒ THỊ CỦA HÀM SỐ 14. A. Trọng tâm kiến thức 14. 1 Tọa độ của một điểm 14. 2 Xác định một điểm trên mặt phẳng tọa độ khi biết tọa độ của nó 14. 3 Đồ thị của hàm số 15. B. Các dạng bài tập 15. + Dạng 1 Đọc, biểu diễn toạ độ điểm trên mặt phẳng toạ độ 15. + Dạng 2 Vẽ đồ thị hàm số cho bởi bảng giá trị 17. + Dạng 3 Xác định khoảng cách giữa hai điểm trên mặt phẳng tọa độ 20. + Dạng 4 Điểm thuộc đồ thị, điểm không thuộc đồ thị của hàm số 22. C. Bài tập vận dụng 23. Bài 3 HÀM SỐ BẬC NHẤT y = ax + b (a khác 0) 37. A. Trọng tâm kiến thức 37. 1 Hàm số bậc nhất, bảng giá trị 37. 2 Đồ thị của hàm số bậc nhất 37. B. Các dạng bài tập 37. + Dạng 1 Hàm số bậc nhất, giá trị của hàm số bậc nhất 37. + Dạng 2 Vẽ đồ thị hàm số bậc nhất 39. + Dạng 3 Điểm thuộc đường thẳng Điểm không thuộc đường thẳng 45. + Dạng 4 Xác định đường thẳng 46. + Dạng 5 Vận dụng 47. C. Bài tập vận dụng 49. Bài 4 HỆ SỐ GÓC CỦA ĐƯỜNG THẲNG 60. A. Trọng tâm kiến thức 60. 1 Hệ số góc của đường thẳng 60. 2 Đường thẳng song song và đường thẳng cắt nhau 60. B. Các dạng bài tập 60. + Dạng 1 Nhận diện hệ số góc Xác định đường thẳng biết hệ số góc 60. + Dạng 2 Nhận dạng cặp đường thẳng song song với nhau, cặp đường thẳng cắt nhau, cặp đường thẳng. vuông góc với nhau 62. + Dạng 3 Bài toán tham số liên quan đến hệ số góc của đường thẳng 64. + Dạng 4 Xác định đường thẳng với quan hệ song song 65. + Dạng 5 Xác định đường thẳng với quan hệ vuông góc 66. C. Bài tập vận dụng 68. LUYỆN TẬP CHUNG 77. A. Hàm số bậc nhất 77. B. Tìm hệ số góc của đường thẳng 82. C. Xác định vị trí tương đối giữa hai đường thẳng 83. D. Tìm m để đồ thị hàm số thoả mãn điều kiện về vị trí tương đối 90. ÔN TẬP CHƯƠNG V 102. A. Bài tập trắc nghiệm 102. B. Bài tập tự luận 108.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề chia đa thức một biến đã sắp xếp
Tài liệu gồm 18 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề chia đa thức một biến đã sắp xếp, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. BÀI GIẢNG CỦNG CỐ KIẾN THỨC NỀN I. Lý thuyết II. Các dạng bài tập Dạng 1 : Chia đa thức một biến đã sắp xếp (phép chia hết). + Bước 1: Nhân số chia với một biểu thức sao cho giá trị khi nhân bằng giá trị mũ cao nhất của số bị chia. + Bước 2: Lấy đa thức bị chia trừ đi tích vừa nhân được. + Bước 3: Quay về bước 1 đến khi dư cuối cùng bằng 0. Dạng 2 : Chia đa thức một biến đã sắp xếp (phép chia có dư). + Bước 1: Nhân số chia với một biểu thức sao cho giá trị khi nhân bằng giá trị mũ cao nhất của số bị chia. + Bước 2: Lấy đa thức bị chia trừ đi tích vừa nhân được. + Bước 3: Quay về bước 1 đến khi đa thức dư có bậc nhỏ hơn bậc của đa thức chia. Dạng 3 : Chia đa thức một biến đã sắp xếp có chứa tham số m. + Bước 1: Nhân số chia với một biểu thức sao cho giá trị khi nhân bằng giá trị mũ cao nhất của số bị chia. + Bước 2: Lấy đa thức bị chia trừ đi tích vừa nhân được. + Bước 3: Quay về bước 1 đến khi đa thức dư cuối cùng bằng 0 hoặc đa thức dư có bậc nhỏ hơn bậc của đa thức chia. Dạng 4 : Tìm m để số bị chia chia hết cho số chia. Phương pháp 1: Thực hiện phép chia. + Bước 1: Thực hiện chia đa thức chứa tham số ở dạng 3. + Bước 2: Để số bị chia chia hết cho số chia thì phần dư bằng 0. + Bước 3: Giải tìm ra m. Phương pháp 2: Hệ số bất định. + Bước 1: Dựa vào bậc cao nhất của số bị chia và số chia ta gọi dạng tổng quát của thương. + Bước 2: Nhân thương với số chia và chuyển biểu thức về dạng tổng quát. + Bước 3: Cho các hạng tử của biểu thức ở bước 2 và số bị chia bằng nhau, giải tìm được giá trị cần tìm. Phương pháp 3: Phương pháp trị số riêng. + Bước 1: Đưa phép chia về dạng A(x) = B(x).Q(x). + Bước 2: Thay giá trị x để B(x) = 0 vào phương trình trên. + Bước 3: Giải ra ta tìm được giá trị cần tìm. B. PHIẾU BÀI TỰ LUYỆN Dạng 1: Chia đa thức một biến đã sắp xếp. Dạng 2: Sắp xếp đa thức theo luỹ thừa giảm dần rồi thực hiện phép chia. Dạng 3: Tìm x. Dạng 4: Phân tích đa thức thành nhân tử rồi thực hiện phép chia. Dạng 5: Sử dụng hằng đẳng thức để thực hiện phép chia. Dạng 6: Tìm đa thức M. Dạng 7: Tìm a và b để A chia hết cho B.
Chuyên đề chia đơn thức cho đơn thức, chia đa thức cho đơn thức
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề chia đơn thức cho đơn thức, chia đa thức cho đơn thức, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. TRỌNG TÂM CẦN ĐẠT 1. Chia đơn thức cho đơn thức. 2. Chia đa thức cho đơn thức. B. CÁC DẠNG BÀI TẬP Dạng 1 : Chia đơn thức cho đơn thức. Muốn chia đơn thức A cho đơn thức B ta làm như sau: + Bước 1: Chia hệ số của đơn thức A cho hệ số của đơn thức B. + Bước 2: Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B. + Bước 3: Nhân các kết quả vừa tìm được với nhau. Dạng 2 : Chia đa thức cho đơn thức. Muốn chia đa thức A cho đơn thức B ta làm như sau: Chia mỗi hạng tử của A cho B rồi cộng các kết quả với nhau. C. PHIẾU BÀI TỰ LUYỆN
Chuyên đề phân tích đa thức thành nhân tử
Tài liệu gồm 32 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phân tích đa thức thành nhân tử, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. LÝ THUYẾT 1. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung. 2. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức. 3. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử. 4. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp. B. CÁC DẠNG BÀI TẬP MINH HỌA CƠ BẢN + Dạng 1: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung. + Dạng 2: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức. + Dạng 3: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử. + Dạng 4: Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ. + Dạng 5: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp. + Dạng 6: Tìm x với điều kiện cho trước. C. CÁC DẠNG BÀI TỔNG HỢP MINH HỌA NÂNG CAO D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề những hằng đẳng thức đáng nhớ
Tài liệu gồm 19 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề những hằng đẳng thức đáng nhớ, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. LÝ THUYẾT 1. Bình phương của một tổng. 2. Bình phương của một hiệu. 3. Hiệu hai bình phương. 4. Lập phương của một tổng. 5. Lập phương của một hiệu. 6. Tổng hai lập phương. 7. Hiệu hai lập phương. Hệ quả : 1. Tổng hai bình phương. 2. Tổng hai lập phương. 3. Bình phương của tổng ba số hạng. 4. Lập phương của tổng ba số hạng. B. CÁC DẠNG BÀI TẬP MINH HỌA CƠ BẢN Dạng 1 : Biến đổi biểu thức. Áp dụng 7 hằng đẳng thức đáng nhớ để thực hiện biến đổi biểu thức. Dạng 2 : Tính giá trị biểu thức. Dạng bài toán này rất đa dạng ta có thể giải theo phương pháp cơ bản như sau: + Biến đổi biểu thức cho trước thành những biểu thức cần thiết sao cho phù hợp với biểu thức cần tính giá trị. + Áp dụng 7 hằng đẳng thức đáng nhớ để thực hiện biến đổi biểu thức cần tính giá trị về biểu thức có liên quan đến giá trị đề bài đã cho. + Thay vào biểu thức cần tính tìm được giá trị. Dạng 3 : Tìm giá trị lớn nhất, giá trị nhỏ nhất. + Giá trị lớn nhất của biểu thức A(x). Áp dụng bất đẳng thức ta biến đổi được về dạng: m – Q2(x) =< m (với m là hằng số), suy ra GTLN của A(x) là m. + Giá trị nhỏ nhất của biểu thức A(x). Áp dụng bất đẳng thức ta biến đổi được về dạng: n + Q2(x) >= n (với n là hằng số), suy ra GTNN của A(x) là n. C. CÁC DẠNG BÀI TẬP MINH HỌA NÂNG CAO TỔNG HỢP D. PHIẾU BÀI TỰ LUYỆN