Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Phú Thọ; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Phú Thọ : + Cho nửa đường tròn (O) đường kính BC R 2. Điểm A di động trên nửa đường tròn (O). Gọi H là hình chiếu của điểm A lên BC. Gọi D và E lần lượt là hình chiếu của H lên AC và AB. Giá trị lớn nhất của diện tích tứ giác AEHD bằng? + Một nhóm bạn đi câu cá. Bạn câu được ít nhất câu được 1 7 tổng số cá mà cả nhóm câu được, bạn câu được nhiều nhất câu được 1 5 tổng số cá mà cả nhóm câu được. Biết rằng số cá câu được của mỗi bạn là khác nhau. Số người của nhóm đi câu cá là? + Cho tam giác ABC nhọn (AB AC), có trực tâm H và nội tiếp trong đường tròn (O). Gọi DEF tương ứng là chân các đường cao của tam giác ABC kẻ từ ABC. Tia AO cắt BC tại M, gọi P Q tương ứng là hình chiếu của M trên các cạnh AC AB. a) Chứng minh tam giác HFE đồng dạng với tam giác MPQ. b) Chứng minh 2 AB DB MB AC DC MC. c) Khi điểm A di động trên (O), dây cung BC cố định sao cho tam giác ABC nhọn. Đường thẳng chứa tia phân giác ngoài của góc BHC cắt AB AC lần lượt tại hai điểm R N. Đường tròn ngoại tiếp tam giác ARN cắt đường phân giác trong của BAC tại điểm thứ hai là K. Chứng minh rằng đường thẳng HK luôn đi qua một điểm cố định.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2017 - 2018 phòng GDĐT thành phố Thái Nguyên
Đề thi học sinh giỏi Toán 9 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên
Tuyển tập 45 đề thi HSG Toán 9 có lời giải chi tiết
Tài liệu tuyển tập 45 đề thi HSG Toán 9 có lời giải chi tiết từ các trường THPT và cơ sở Giáo dục – Đào tạo trên toàn quốc. Các đề thi theo hình thức tự luận, hy vọng bộ đề học sinh giỏi các năm học trước sẽ giúp các em học sinh nắm được cấu trúc đề, nội dung cần ôn tập chuẩn bị cho kỳ thi HSG Toán 9 sắp tới.
Tuyển tập 100 đề thi học sinh giỏi môn Toán 9 - Hồ Khắc Vũ
Tài liệu gồm 114 trang tuyển tập 100 đề thi chọn học sinh giỏi môn Toán lớp 9 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.
Đề thi chọn đội tuyển học sinh giỏi Toán 9 năm học 2017 - 2018 trường THCS Trần Mai Ninh - Thanh Hóa (Vòng 1)
Đề thi chọn đội tuyển học sinh giỏi (HSG) Toán 9 năm học 2017 – 2018 trường THCS Trần Mai Ninh – Thanh Hóa (Vòng thi thứ nhất) gồm 5 bài toán tự luận. Trích dẫn đề thi : + Cho hình vuông ABCD, có M và N theo thứ tự là trung điểm của các cạnh AB và BC, nối DN cắt CM tại I. a. Chứng minh: CI.CM = CN.CB b. Chứng minh: DI = 4IN c. Kẻ tia AH vuông góc với DN tại H và tia AH cắt CD tại P. Cho AB = a Tính diện tích tứ giác HICP [ads] + Cho a^2 + b^2 = c^2 + d^2 = 2017 và ac + bd = 0. Tính giá trị biểu thức S = ab + cd. + Cho a, b là các số nguyên dương sao cho: a + 1 và b + 2007 chia hết cho 6. Chứng minh: 4^a + a + b chia hết cho 6. + Cho x, y là các số thực dương thỏa mãn: x + y = (x – y)√xy. Tìm giá trị nhỏ nhất của P = x + y.