Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Giảng Võ - Hà Nội

Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Giảng Võ, Ba Đình, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Giảng Võ – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Giảng Võ – Hà Nội : + Cho hai biểu thức 2 1 x A x x và 2 52 1 2 2 xx x B với x x 0 4. 1) Tính giá trị biểu thức A khi x = 9. 2) Rút gọn biểu thức B. 3) Tìm các giá trị của x để 1 2 B. 4) Tìm giá trị lớn nhất của biểu thức 6A M B. + Một con thuyền đi qua một khúc sông theo hướng từ B đến C (như hình vẽ) với vận tốc 3,5 km h trong 12 phút. Biết rằng đường đi của thuyền tạo với bờ sông một góc 25°. Hãy tính chiều rộng của khúc sông? (Kết quả tính theo đơn vị km làm tròn kết quả đến chữ số thập phân thứ hai). + Cho tam giác ABC nhọn có đường cao AH. Gọi E là hình chiếu của H trên AB. a. Biết AE cm 3,6; BE cm 6,4. Tính AH EH và góc B (số đo góc làm tròn đến độ). b. Kẻ HF vuông góc với AC tại F. Chứng minh AB AE AC AF. c. Đường thẳng qua A và vuông góc với EF cắt BC tại D; EF cắt AH tại O. Chứng minh rằng 2 2 sin sin AOE ADC S S B C.

Nguồn: toanmath.com

Đọc Sách

Đề giữa học kì 1 Toán 9 năm 2022 - 2023 phòng GDĐT Bình Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Giang, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kì 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Bình Giang – Hải Dương : + Cho tam giác ABC, BC = 6cm, 0 B 60, AB = 4cm, kẻ đường cao AH H BC. Tính: 1) AH, HB, AC (Độ dài đoạn thẳng không cần làm tròn số) 2) Số đo các góc ACB, BAC (Số đo góc làm tròn đến độ, học sinh được sử dụng máy tính cầm tay hoặc bảng số). + Cho các số x, y, z không âm. Chứng minh rằng: 3 33 xyz xyz.
Đề giữa kỳ 1 Toán 9 năm 2022 - 2023 trường THCS Nguyễn Du - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 1 môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Du, huyện Diên Khánh, tỉnh Khánh Hòa; đề thi được biên soạn theo hình thức 30% trắc nghiệm + 70% tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề giữa kì 1 Toán 9 năm 2022 - 2023 trường THCS Phương Mai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 1 môn Toán 9 năm học 2022 – 2023 trường THCS Phương Mai, quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 05 tháng 11 năm 2022. Trích dẫn Đề giữa kì 1 Toán 9 năm 2022 – 2023 trường THCS Phương Mai – Hà Nội : + Tính chiều cao của một cột tháp (làm tròn đến mét), biết rằng lúc tia sáng của mặt trời tạo với phương nằm ngang của mặt đất một góc bằng 51° thì bóng của nó trên mặt đất dài 48m (làm tròn đến mét). + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Vẽ HM vuông góc với AB tại M, HN vuông góc với AC tại N. a) Cho biết AB = 6cm, AC = 8cm. Tính các độ dài BC, AH và số đo các góc B, C. b) Chứng minh AM.AB = AN.AC. c) Qua A kẻ đường thẳng vuông góc với MN cắt BC tại D. Chứng minh D là trung điểm của BC. + Cho các số thực dương a, b thỏa mãn ab > 2021a + 2022b. Chứng minh: a + b > (2021 + 2022)2.
Đề giữa kì 1 Toán 9 năm 2022 - 2023 trường THCS Trần Đăng Ninh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 1 môn Toán 9 năm học 2022 – 2023 trường THCS Trần Đăng Ninh, quận Hà Đông, thành phố Hà Nội. Trích dẫn Đề giữa kì 1 Toán 9 năm 2022 – 2023 trường THCS Trần Đăng Ninh – Hà Nội : + Một chiếc máy bay cất cánh theo một góc 25° so với mặt đất. Hỏi muốn đạt độ cao 2000 m thì máy bay phải bay một đoạn đường là bao nhiêu mét? (làm tròn kết quả đến chữ số thập phân thứ nhất). + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). a) Biết AB = 12cm, BC = 20cm. Tính AC, AH và ABC (làm tròn đến độ); b) Kẻ HM vuông góc với AB tại M, HN vuông góc với AC tại N. Chứng minh: AH = MN và AM.MB + AN.NC = AH2.