Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề một số hệ thức về cạnh và đường cao trong tam giác vuông

Nội dung Tài liệu lớp 9 môn Toán chủ đề một số hệ thức về cạnh và đường cao trong tam giác vuông Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 - Hệ thức về cạnh và đường cao trong tam giác vuôngTóm tắt lý thuyếtBài tập và các dạng toánDạng 1: Tính độ dài các đoạn thẳng trong tam giác vuôngDạng 2: Tính chu vi, diện tích các hìnhDạng 3: Chứng minh các hệ thức liên quan đến tam giác vuông Tài liệu học Toán lớp 9 - Hệ thức về cạnh và đường cao trong tam giác vuông Tài liệu này bao gồm 43 trang, cung cấp kiến thức cần thiết, các dạng toán và bài tập liên quan đến cạnh và đường cao trong tam giác vuông trong chương trình môn Toán lớp 9. Đồng thời, tài liệu cũng đi kèm với đáp án và lời giải chi tiết. Tóm tắt lý thuyết Khi giải các bài toán về cạnh và đường cao trong tam giác vuông, việc nắm vững các kiến thức về định lý Talet, về đồng dạng của tam giác là rất quan trọng. Cần phải hiểu rõ các hệ thức sau: Hệ thức giữa cạnh góc vuông và hình chiếu: Bình phương mỗi cạnh góc vuông bằng tích của cạnh huyền và hình chiếu của cạnh góc vuông đó trên cạnh huyền. Hệ thức liên quan tới đường cao: Bình phương đường cao ứng với cạnh huyền bằng tích của hai hình chiếu của hai cạnh góc vuông trên cạnh huyền. Bài tập và các dạng toán Dạng 1: Tính độ dài các đoạn thẳng trong tam giác vuông Để giải bài toán này, các bước cơ bản như sau: Xác định vai trò của đoạn thẳng đã biết và đoạn thẳng cần tính trong tam giác vuông. Lựa chọn công thức tính phù hợp dựa trên các kiến thức đã học. Dạng 2: Tính chu vi, diện tích các hình Để tính chu vi, diện tích các hình, bạn cần làm các bước sau: Xác định hình cần tính chu vi, diện tích. Viết công thức tính chu vi, diện tích của hình đó. Dạng 3: Chứng minh các hệ thức liên quan đến tam giác vuông Để chứng minh các hệ thức liên quan đến tam giác vuông, bạn cần áp dụng các hệ thức về cạnh và đường cao theo các bước: Chọn tam giác vuông thích hợp chứa các đoạn thẳng cần chứng minh. Tính các đoạn thẳng cần chứng minh bằng các hệ thức về cạnh và đường cao. Trong tài liệu còn đi kèm bài tập trắc nghiệm và bài tập về nhà để giúp bạn ôn tập kiến thức. File Word dành cho giáo viên có thể tải xuống!

Nguồn: sytu.vn

Đọc Sách

Giải bài toán bằng cách lập phương trình, hệ phương trình Phạm Huy Huân
Nội dung Giải bài toán bằng cách lập phương trình, hệ phương trình Phạm Huy Huân Bản PDF - Nội dung bài viết Giải bài toán bằng phương trình, hệ phương trình - Tài liệu của thầy Phạm Huy Huân Giải bài toán bằng phương trình, hệ phương trình - Tài liệu của thầy Phạm Huy Huân Tài liệu được biên soạn bởi thầy giáo Phạm Huy Huân, gồm tổng cộng 29 trang, hướng dẫn cách giải bài toán bằng cách lập phương trình, hệ phương trình. Đây là tài liệu hữu ích giúp học sinh hiểu rõ và áp dụng kiến thức Toán lớp 9, cũng như ôn tập để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Trên cơ sở hướng dẫn của thầy Phạm Huy Huân, các bước giải bài toán bằng cách lập phương trình được chia thành 3 phần: Bước 1: Lập hệ phương trình Chọn các ẩn số và đặt điều kiện, đơn vị thích hợp cho từng ẩn số. Biểu diễn các đại lượng chưa biết dưới dạng ẩn và các đại lượng đã biết dưới dạng biểu thức. Lập phương trình để thể hiện mối quan hệ giữa các đại lượng. Bước 2: Giải phương trình hoặc hệ phương trình vừa lập được. Bước 3: Kiểm tra lại điều kiện và trả lời câu hỏi đề bài. Ngoài ra, tài liệu của thầy Phạm Huy Huân cũng trình bày một số dạng bài toán điển hình, bao gồm: Dạng 1: Bài toán về quan hệ giữa các số. Dạng 2: Bài toán chuyển động, bao gồm có hoặc không có sự tham gia của dòng nước. Dạng 3: Toán về năng suất và khối lượng công việc. Dạng 4: Toán về phần trăm (%). Dạng 5: Bài toán về công việc làm chung hoặc làm riêng. Dạng 6: Bài toán liên quan đến hình học. Dạng 7: Toán thực tế. Đồng thời, tài liệu cũng cung cấp hướng dẫn cụ thể và chi tiết để giúp học sinh hiểu và áp dụng phương pháp giải bài toán bằng phương trình, hệ phương trình một cách hiệu quả.
Giải toán bằng cách lập phương trình hệ phương trình
Nội dung Giải toán bằng cách lập phương trình hệ phương trình Bản PDF - Nội dung bài viết Giải toán bằng phương pháp lập phương trình - hệ phương trìnhCác loại bài toán chuyển độngBài toán liên quan đến năng suất lao động - công việc Giải toán bằng phương pháp lập phương trình - hệ phương trình Để giải bài toán bằng phương pháp lập phương trình - hệ phương trình, ta cần thực hiện theo các bước sau: Bước 1: Chọn ẩn số và đặt điều kiện nếu cần. Bước 2: Tính các đại lượng theo giả thiết và ẩn số, sau đó lập phương trình hoặc hệ phương trình. Bước 3: Giải phương trình hoặc hệ phương trình đã lập. Bước 4: Kiểm tra điều kiện và đưa ra câu trả lời. Các loại bài toán chuyển động Quãng đường = Vận tốc * Thời gian Vận tốc tỷ lệ nghịch với thời gian và tỷ lệ thuận với quãng đường. Khi hai xe đi ngược chiều gặp nhau: Thời gian đi được bằng nhau và tổng quãng đường bằng quãng đường cần đi. Nếu xe A đuổi kịp xe B, hiệu quãng đường đi được bằng quãng đường giữa A và B. Với Ca nô, tàu xuồng trên dòng nước: Vận tốc = Vận tốc riêng ± Vận tốc dòng nước. Bài toán liên quan đến năng suất lao động - công việc Trong các bài toán này, khối lượng công việc = năng suất lao động * thời gian. Với các bước hướng dẫn và ví dụ cụ thể, học sinh sẽ dễ dàng áp dụng phương pháp lập phương trình để giải các bài toán Toán lớp 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. Bằng cách thực hành nhiều bài tập, học sinh sẽ nâng cao khả năng giải quyết vấn đề và hiểu sâu hơn về các khái niệm Toán học.
Chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét
Nội dung Chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét Bản PDF - Nội dung bài viết Chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét Chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét Bài toán giải và biện luận nghiệm phương trình bậc hai cùng với ứng dụng của hệ thức Vi-ét là một trong những chủ đề quan trọng nhất trong chương trình Đại số lớp 9. Đây là một dạng toán mà học sinh thường gặp phải và cần phải nắm vững để giải quyết được các bài tập trong sách giáo khoa. Qua việc giải phương trình bậc hai, học sinh sẽ học được cách tìm ra các nghiệm của phương trình, từ đó có thể áp dụng để giải các bài toán thực tế. Hệ thức Vi-ét là công cụ quan trọng giúp chúng ta tính được các giá trị của x khi biết tổng và tích hai nghiệm của phương trình bậc hai. Vận dụng hệ thức Vi-ét vào việc giải phương trình giúp học sinh nắm rõ cách thức tính toán, giải quyết bài toán một cách cụ thể và hiệu quả. Ôn tập và ôn luyện kỹ năng này giúp học sinh cải thiện khả năng suy luận và giải bài toán Đại số một cách chính xác.
Chuyên đề hệ thức Vi-et và ứng dụng Nguyễn Ngọc Sơn
Nội dung Chuyên đề hệ thức Vi-et và ứng dụng Nguyễn Ngọc Sơn Bản PDF - Nội dung bài viết Chuyên đề hệ thức Vi-et và ứng dụng Nguyễn Ngọc Sơn Chuyên đề hệ thức Vi-et và ứng dụng Nguyễn Ngọc Sơn Tài liệu này được biên soạn bởi thầy Nguyễn Ngọc Sơn, chuyên về hệ thức Vi-et và cách áp dụng nó vào việc giải các bài toán trong Toán lớp 9. Tài liệu bao gồm 07 trang với các dạng sau: 1. Dạng 1: Nhẩm nghiệm của phương trình bậc hai 1.1. Dạng đặc biệt: Phương trình bậc hai có một nghiệm là 1 hoặc – 1. 1.2. Cho phương trình bậc hai, có một hệ số chưa biết, cho trước một nghiệm, tìm nghiệm còn lại và chỉ ra hệ số chưa biết của phương trình. 2. Dạng 2: Lập phương trình bậc hai 2.1. Lập phương trình bậc hai biết hai nghiệm. 2.2. Lập phương trình bậc hai có hai nghiệm thoả mãn biểu thức chứa hai nghiệm của một phương trình cho trước. 3. Dạng 3: Tìm hai số biết tổng và tích của chúng. 4. Dạng 4: Dạng toán về biểu thức liên hệ giữa các nghiệm của phương trình bậc hai. 4.1. Tính giá trị của biểu thức chứa nghiệm. 4.2. Tìm hệ thức liên hệ giữa hai nghiệm của phương trình không phụ thuộc tham số. 4.3. Tìm giá trị của tham số thỏa mãn biểu thức nghiệm cho trước. 4.4. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức nghiệm. 5. Dạng 5: Xét dấu các nghiệm của phương trình bậc hai. Đây là một tài liệu hữu ích giúp học sinh nắm vững hơn về hệ thức Vi-et và cách áp dụng nó vào việc giải các bài toán trong Toán lớp 9. Các ví dụ và bài tập trong tài liệu sẽ giúp học sinh hiểu rõ hơn về cách giải và áp dụng hệ thức Vi-et trong thực tế.