Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 2) - Nguyễn Xuân Chung

Tài liệu gồm 99 trang, được biên soạn bởi thầy giáo Nguyễn Xuân Chung, tuyển chọn và hướng dẫn phương pháp giải các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 2), giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. PHẦN 2 : CÁC BÀI TOÁN TẬP HỢP ĐIỂM; GTLN – GTNN. Trong phần 2 này chúng ta nghiên cứu các bài toán có nội dung về quỹ tích và giá trị lớn nhất, giá trị nhỏ nhất. Thông thường: Các bài toán tập hợp điểm cũng chính là các bài toán về min – max bởi vì khi tập hợp điểm thỏa mãn điều kiện nhất định thì sẽ đạt min – max. Tuy nhiên: Bài toán tập hợp điểm thiên về vị trí tương đối và tính toán, còn bài toán về min – max thiên về khảo sát hàm số và bất đẳng thức. Từ đó chúng ta cũng thấy được phương pháp giải có đặc trưng riêng. + Bài toán tập hợp điểm: Thường sử dụng phương pháp véc tơ, các định lý trong tam giác, hình bình hành, sự đối xứng, song song, vuông góc. + Bài toán min – max: Thường sử dụng phương pháp khử dần ẩn (Thêm biến, đổi biến, dồn biến), khảo sát cực trị, bất đẳng thức B.C.S, Mincopxki. Như vậy trong phần này các bài toán có mức độ Vận dụng – Vận dụng cao. Để giải nhanh thì chúng ta không chỉ nắm vững kiến thức mà còn sử dụng một số công thức tính nhanh, kỹ năng sử dụng CASIO. Nếu chỉ làm tự luận thì cũng có kết quả nhưng thi trắc nghiệm thì thời gian không nhiều!. Các em cần tính tổng thời gian của quy trình giải một bài toán khó như sau: + Đọc hiểu đề và yêu cầu của bài toán: Đọc để hiểu nội dung của bài toán là gì? + Tái hiện kiến thức: Trong bài toán chúng ta cần thiết những kiến thức nào? + Xác định các yếu tố cần giải: Chẳng hạn mặt cầu thì cần biết tâm, bán kính. + Biến đổi, tính toán: Đây là quy trình cuối cùng dẫn đến kết quả và trả lời, có nhiều khi phải vẽ hình minh họa thì càng mất nhiều thời gian. Trong phần này, các bài toán có chọn lọc và được biên soạn theo chủ đề: Điểm – mặt phẳng, Điểm – Mặt cầu, Điểm – Đường thẳng, và tổ hợp của các yếu tố trên. Trong phần 1, tôi đã đưa ra một số kiến thức bổ xung và công thức tính nhanh, nên phần này tôi không nêu ra. Tuy nhiên, trong phần này cũng có kiến thức bổ xung hữu ích để giúp chúng ta giải nhanh, từ đó mới tiết kiệm được thời gian toàn bài thi. Đặc biệt trong phần này ta nghiên cứu bài toán mà tạm gọi là “Định luật phản xạ ánh sáng đối với gương phẳng”. I. BỔ XUNG ‐ BÀI TOÁN VỀ TÂM TỈ CỰ. II. BÀI TOÁN VỀ TỔ HỢP VÉC TƠ. III. BÀI TOÁN VỀ QUỸ TÍCH – VỊ TRÍ TƯƠNG ĐỐI. IV. BÀI TOÁN VỀ TỔNG – HIỆU KHOẢNG CÁCH. V. BÀI TOÁN TỔNG HỢP CUỐI PHẦN 2. VI. PHỤ LỤC.

Nguồn: toanmath.com

Đọc Sách

Phương pháp tọa độ hóa trong không gian
Tài liệu gồm 34 trang, hướng dẫn sử dụng phương pháp tọa độ hóa trong không gian để giải một số bài toán hình học không gian; giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Hình học chương 3: Phương Pháp Toạ Độ Trong Không Gian. DẠNG 1 . GẮN HỆ TRỤC TỌA ĐỘ VÀO CÁC HÌNH ĐA DIỆN CÓ SẴN MÔ HÌNH TAM DIỆN VUÔNG. Phương pháp : + Bước 1: Chọn hệ trục toạ độ Oxyz thích hợp. Trong đó gốc tọa độ là giao điểm chung của ba đường đôi một vuông góc với nhau, các tia Ox, Oy, Oz lần lượt nằm trên ba đường đó. + Bước 2: Xác định các toạ độ điểm toạ độ của các véc tơ có liên quan. + Bước 3: Sử dụng các kiến thức về toạ độ để giải quyết các bài toán có liên quan. – Loại 1. Hình chóp có đáy là tam giác. – Loại 2. Hình chóp có đáy là hình thang. – Loại 3. Hình chóp có đáy là hình vuông, hình chữ nhật. – Loại 4. Lăng trụ đứng tam giác. – Loại 5. Lăng trụ đứng tứ giác. DẠNG 2 . GẮN HỆ TRỤC TỌA ĐỘ VÀO CÁC HÌNH ĐA DIỆN CÓ SẴN MÔ HÌNH TAM DIỆN VUÔNG. Dạng toán : Cho tứ diện ABCD có BCD là tam giác vuông tại C và AB ⊥ (BCD). Cách dựng : Ta dựng hệ trục tọa độ Oxyz sao cho C ≡ O, D ∈ Ox, B ∈ Oy, Oz qua C và vuông góc với (BCD). – Loại 1. Tứ diện có một cạnh vuông góc với mặt đáy. – Loại 2. Chóp tam giác đều. – Loại 3. Chóp tứ giác đều hoặc chóp có đáy là hình thoi, đường cao SO. – Loại 4. Hình chóp có đáy là hình vuông (chữ nhật) và mặt bên vuông góc với đáy. – Loại 5. Lăng trụ xiên.
138 bài toán cực trị hình học giải tích không gian Oxyz vận dụng cao
Tài liệu gồm 85 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tuyển chọn 138 bài toán cực trị hình học giải tích không gian Oxyz mức độ vận dụng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Hình học chương 3 và ôn thi tốt nghiệp THPT môn Toán. Trích dẫn 138 bài toán cực trị hình học giải tích không gian Oxyz vận dụng cao: + Cho đường thẳng 1 2 2 1 1 x y z và hai điểm A(0;-1;3), B(1;-2;1). Tìm tọa độ điểm M thuộc đường thẳng sao cho 2 2 MA MB 2 đạt giá trị nhỏ nhất. + Cho đường thẳng 1 2 1 1 2 x y z và ba điểm A(1;3;-2), B(0;4;-5), C(1;2;-4). Biết điểm M a b c thuộc đường thẳng sao cho 2 2 2 MA MB MC đạt giá trị nhỏ nhất. Khi đó, tổng abc bằng bao nhiêu? + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng 1 2 1 1 x y z và hai điểm A(-1;-1;6), B(2;-1;0). Biết điểm M thuộc đường thẳng sao cho biểu thức 2 2 MA MB 3 đạt giá trị nhỏ nhất là Tmin. Khi đó, Tmin bằng bao nhiêu?
Chủ đề phương trình đường thẳng ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 304 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề phương trình đường thẳng ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Xác định vectơ chỉ phương của đường thẳng. DẠNG 2 Viết phương trình đường thẳng. DẠNG 3 Tìm tọa độ điểm liên quan đến đường thẳng. DẠNG 4 Góc giữa đường thẳng và mặt phẳng, giữa hai đường thẳng. DẠNG 5 Khoảng cách từ điểm đến đường thẳng, giữa hai đường thẳng. DẠNG 6 Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng. DẠNG 7 Bài toán liên quan đến đường thẳng – mặt phẳng – mặt cầu. DẠNG 8 Điểm thuộc đường thẳng. DẠNG 9 Phương trình đường thẳng liên quan đến góc và khoảng cách. DẠNG 10 Hình chiếu và bài toán cực trị. DẠNG 11 Phương trình đường thẳng trong đề thi của Bộ Giáo dục và Đào tạo.
Chủ đề phương trình mặt phẳng ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 262 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề phương trình mặt phẳng ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Xác định vectơ pháp tuyến của mặt phẳng. DẠNG 2 Viết phương trình mặt phẳng dùng đường thẳng. DẠNG 3 Vị trí tương đối giữa hai mặt phẳng. DẠNG 4 Tìm tọa độ điểm liên quan đến mặt phẳng. DẠNG 5 Khoảng cách từ một điểm để một mặt phẳng. DẠNG 6 Ví trị tương đối giữa mặt cầu và mặt phẳng. DẠNG 7 Viết phương trình mặt cầu liên quan đến mặt phẳng. DẠNG 8 Điểm thuộc mặt phẳng. DẠNG 9 Phương trình mặt phẳng không dùng đường thẳng. DẠNG 10 Phương trình theo đoạn chắn. DẠNG 11 Hình chiếu của điểm lên mặt phẳng. DẠNG 12.1 Các bài toán cực trị phần 1. DẠNG 12.2 Các bài toán cực trị phần 2. DẠNG 13 Các bài toán liên quan đến góc. DẠNG 14 Phương trình mặt phẳng trong đề thi của Bộ Giáo dục và Đào tạo.