Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 2) - Nguyễn Xuân Chung

Tài liệu gồm 99 trang, được biên soạn bởi thầy giáo Nguyễn Xuân Chung, tuyển chọn và hướng dẫn phương pháp giải các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 2), giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. PHẦN 2 : CÁC BÀI TOÁN TẬP HỢP ĐIỂM; GTLN – GTNN. Trong phần 2 này chúng ta nghiên cứu các bài toán có nội dung về quỹ tích và giá trị lớn nhất, giá trị nhỏ nhất. Thông thường: Các bài toán tập hợp điểm cũng chính là các bài toán về min – max bởi vì khi tập hợp điểm thỏa mãn điều kiện nhất định thì sẽ đạt min – max. Tuy nhiên: Bài toán tập hợp điểm thiên về vị trí tương đối và tính toán, còn bài toán về min – max thiên về khảo sát hàm số và bất đẳng thức. Từ đó chúng ta cũng thấy được phương pháp giải có đặc trưng riêng. + Bài toán tập hợp điểm: Thường sử dụng phương pháp véc tơ, các định lý trong tam giác, hình bình hành, sự đối xứng, song song, vuông góc. + Bài toán min – max: Thường sử dụng phương pháp khử dần ẩn (Thêm biến, đổi biến, dồn biến), khảo sát cực trị, bất đẳng thức B.C.S, Mincopxki. Như vậy trong phần này các bài toán có mức độ Vận dụng – Vận dụng cao. Để giải nhanh thì chúng ta không chỉ nắm vững kiến thức mà còn sử dụng một số công thức tính nhanh, kỹ năng sử dụng CASIO. Nếu chỉ làm tự luận thì cũng có kết quả nhưng thi trắc nghiệm thì thời gian không nhiều!. Các em cần tính tổng thời gian của quy trình giải một bài toán khó như sau: + Đọc hiểu đề và yêu cầu của bài toán: Đọc để hiểu nội dung của bài toán là gì? + Tái hiện kiến thức: Trong bài toán chúng ta cần thiết những kiến thức nào? + Xác định các yếu tố cần giải: Chẳng hạn mặt cầu thì cần biết tâm, bán kính. + Biến đổi, tính toán: Đây là quy trình cuối cùng dẫn đến kết quả và trả lời, có nhiều khi phải vẽ hình minh họa thì càng mất nhiều thời gian. Trong phần này, các bài toán có chọn lọc và được biên soạn theo chủ đề: Điểm – mặt phẳng, Điểm – Mặt cầu, Điểm – Đường thẳng, và tổ hợp của các yếu tố trên. Trong phần 1, tôi đã đưa ra một số kiến thức bổ xung và công thức tính nhanh, nên phần này tôi không nêu ra. Tuy nhiên, trong phần này cũng có kiến thức bổ xung hữu ích để giúp chúng ta giải nhanh, từ đó mới tiết kiệm được thời gian toàn bài thi. Đặc biệt trong phần này ta nghiên cứu bài toán mà tạm gọi là “Định luật phản xạ ánh sáng đối với gương phẳng”. I. BỔ XUNG ‐ BÀI TOÁN VỀ TÂM TỈ CỰ. II. BÀI TOÁN VỀ TỔ HỢP VÉC TƠ. III. BÀI TOÁN VỀ QUỸ TÍCH – VỊ TRÍ TƯƠNG ĐỐI. IV. BÀI TOÁN VỀ TỔNG – HIỆU KHOẢNG CÁCH. V. BÀI TOÁN TỔNG HỢP CUỐI PHẦN 2. VI. PHỤ LỤC.

Nguồn: toanmath.com

Đọc Sách

Bài giảng phương trình đường thẳng trong không gian - Lê Hồng Đức
Tài liệu gồm 122 trang, được biên soạn bởi thầy giáo Lê Hồng Đức và nhóm Cự Môn, hướng dẫn giải các dạng toán chủ đề phương trình đường thẳng trong không gian Oxyz trong chương trình Hình học 12. A. BÀI GIẢNG 1. Phương trình tham số của đường thẳng. 2. Phương trình chính tắc của đường thẳng. 3. Vị trí tương đối giữa hai đường thẳng. 4. Một số bài toán về tính khoảng cách. B. PHƯƠNG PHÁP GIẢI CÁC DẠNG TOÁN THƯỜNG GẶP Bài toán 1: Phương trình đường thẳng. Bài toán 2: Chuyển dạng phương trình đường thẳng. Bài toán 3: Viết phương trình đường thẳng. Bài toán 4: Điểm và đường thẳng. Bài toán 5: Điểm và mặt phẳng. Bài toán 6: Điểm và mặt cầu. Bài toán 7: Vị trí tương đối của hai đường thẳng. Bài toán 8: Vị trí tương đối của đường thẳng và mặt phẳng. Bài toán 9: Vị trí tương đối của mặt cầu với đường thẳng. Bài toán 10: Góc và khoảng cách. Bài toán 11: Phương pháp toạ độ hóa.
Tài liệu chuyên đề phương trình đường thẳng trong không gian
Tài liệu gồm 327 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề phương trình đường thẳng trong không gian, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 3. PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Xác định vectơ chỉ phương của đường thẳng. + Dạng 2. Lập phương trình đường thẳng. + Dạng 3. Xét vị trí tương đối của hai đường thẳng. + Dạng 4. Vị trí tương đối của đường thẳng và mặt phẳng. + Dạng 5. Hình chiếu của một điểm lên một đường thẳng. + Dạng 6. Hình chiếu của một điểm lên một mặt phẳng. + Dạng 7. Khoảng cách từ điểm đến đường thẳng, khoảng cách giữa hai đường thẳng chéo nhau. + Dạng 8. Góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng. + Dạng 9. Xác định tọa độ điểm trên đường thẳng. HỆ THỐNG MỘT SỐ DẠNG TOÁN THƯỜNG GẶP VỀ LẬP PHƯƠNG TRÌNH ĐƯỜNG THẲNG: + Bài toán 1. Lập phương trình đường thẳng d đi qua điểm A và d vuông góc (α). + Bài toán 2. Lập phương trình đường thẳng d đi qua điểm A và d // ∆. + Bài toán 3. Lập phương trình đường thẳng d đi qua điểm A và d // (P), d // (Q), (P) không song song, không trùng với (Q). + Bài toán 4. Lập phương trình đường thẳng d là giao tuyến của hai mặt phẳng (P) và (Q). + Bài toán 5. Lập phương trình đường thẳng d đi qua A và d vuông góc d1, d vuông góc d2, d1 không song song, không trùng với d2. + Bài toán 6. Lập phương trình đường thẳng d đi qua A và d // (P), d vuông góc d’. + Bài toán 7. Lập phương trình đường thẳng d’ là hình chiếu vuông góc của d trên mặt phẳng (α). III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Bài tập trắc nghiệm mức độ 5 – 6 điểm (nhận biết). 3. Bài tập trắc nghiệm mức độ 7 – 8 điểm (thông hiểu). 4. Bài tập trắc nghiệm mức độ 9 – 10 điểm (vận dụng – vận dụng cao).
Tài liệu chuyên đề phương trình mặt phẳng
Tài liệu gồm 267 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề phương trình mặt phẳng, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 2 . PHƯƠNG TRÌNH MẶT PHẲNG. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Viết phương trình mặt phẳng (α) khi biết một điểm M và vectơ pháp tuyến n của nó. + Dạng 2. Viết phương trình mặt phẳng (α) đi qua một điểm M và song song với một mặt phẳng (β) cho trước. + Dạng 3. Viết phương trình mặt phẳng (α) đi qua ba điểm A, B, C không thẳng hàng. + Dạng 4. Viết phương trình mặt phẳng (α) qua hai điểm A, B và vuông góc với mặt phẳng (β). + Dạng 5. Viết phương trình mặt phẳng (α) đi qua một điểm M và vuông góc với hai mặt phẳng (P), (Q) cho trước. + Dạng 6. Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách (β) một khoảng k cho trước. + Dạng 7. Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) cho trước và cách điểm M một khoảng k cho trước. + Dạng 8. Viết phương trình mặt phẳng (α) tiếp xúc với mặt cầu (S). + Dạng 9. Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng ∆. + Dạng 10. Viết phương trình mặt phẳng(α) chứa đường thẳng ∆, vuông góc với mặt phẳng (β) hoặc đi qua một điểm, chứa đường thẳng ∆, vuông góc với mặt phẳng (β). + Dạng 11. Viết phương trình mặt phẳng(α) chứa đường thẳng ∆ và song song với ∆’ (∆ và ∆’ chéo nhau). + Dạng 12. Viết phương trình mặt phẳng (α) chứa đường thẳng ∆ và một điểm M. + Dạng 13. Viết phương trình mặt phẳng (α) chứa hai đường thẳng cắt nhau ∆ và ∆’. + Dạng 14. Viết phương trình mặt phẳng (α) chứa hai đường thẳng song song ∆ và ∆’. + Dạng 15. Viết phương trình mặt phẳng (α) đi qua một điểm M và song song với hai đường thẳng ∆ và ∆’ chéo nhau cho trước. + Dạng 16. Viết phương trình mặt phẳng (α) chứa một đường thẳng ∆ và tạo với một mặt phẳng (β) cho trước một góc ϕ cho trước. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Bài tập trắc nghiệm mức độ 5 – 6 điểm (nhận biết). 3. Bài tập trắc nghiệm mức độ 7 – 8 điểm (thông hiểu). 4. Bài tập trắc nghiệm mức độ 9 – 10 điểm (vận dụng – vận dụng cao).
Tài liệu chuyên đề hệ tọa độ trong không gian
Tài liệu gồm 186 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề hệ tọa độ trong không gian, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 1 . HỆ TOẠ ĐỘ TRONG KHÔNG GIAN. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. HỆ TOẠ ĐỘ TRONG KHÔNG GIAN. + Dạng 1. Các câu liên quan tọa độ điểm, tọa độ của vectơ. + Dạng 2. Tích vô hướng và các ứng dụng của tích vô hướng. PHƯƠNG TRÌNH MẶT CẦU. + Dạng 1. Tìm tâm và bán kính mặt cầu. + Dạng 2. Viết phương trình mặt cầu. + Dạng 3. Sự tương giao và sự tiếp xúc. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Các dạng bài tập trắc nghiệm. HỆ TOẠ ĐỘ TRONG KHÔNG GIAN. + Dạng 1. Tìm tọa độ điểm, véctơ liên quan đến hệ trục tọa độ Oxyz. + Dạng 2. Tích vô hướng và ứng dụng. + Dạng 3. Tích có hướng và ứng dụng. PHƯƠNG TRÌNH MẶT CẦU. + Dạng 1. Xác định tâm và bán kính. + Dạng 2. Viết phương trình mặt cầu. + Dạng 3. Một số bài toán liên quan đến tiếp tuyến mặt cầu. + Dạng 4. Bài toán cực trị.