Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 9 năm 2020 - 2021 trường THCS Nguyễn Tri Phương - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề KSCL Toán 9 năm học 2020 – 2021 trường THCS Nguyễn Tri Phương, quận Ba Đình, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Năm ngày 03 tháng 06 năm 2021. Trích dẫn đề KSCL Toán 9 năm 2020 – 2021 trường THCS Nguyễn Tri Phương – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. Do dịch CoVid-19 bùng phát trở lại nên theo kế hoạch hai tổ sản xuất dự định làm 1000 hộp khẩu trang để cung cấp cho tâm dịch Bắc Giang. Nhưng khi thực hiện tổ một làm vượt mức kế hoạch 15%, tổ hai làm vượt mức kế hoạch 20% nên cả hai tổ làm được 1170 hộp khẩu trang. Tính số hộp khẩu trang mà mỗi tổ phải làm theo kế hoạch. + Cho phương trình: x2 + 2mx + 2m – 1 = 0 (tham số m). a) Giải phương trình khi m = -3. b) Tìm m để phương trình có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 ≤ 0 < x2. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. 1) Chứng minh tứ giác BFEC nội tiếp. 2) Tia AO cắt đường tròn (O) tại K. Chứng minh AB. AC = AK. AD. 3) Gọi M là trung điểm của BC. Chứng minh ba điểm H, M, K thẳng hàng. Cho BC cố định, A chuyển động trên cung lớn BC sao cho tam giác ABC có ba góc nhọn, chứng minh diện tích hình tròn ngoại tiếp tam giác AEF không đổi.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT Nam Sách - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Nam Sách, tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2023; đề thi có đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT Nam Sách – Hải Dương : + Cho ba đường thẳng phân biệt y = 3x – 1; y = (m2 – 1)x + m – 3; y = x + 1. Tìm m để ba đường thẳng đã cho đồng quy tại một điểm. + Hai tổ sản xuất dự kiến làm 1000 chiếc khẩu trang trong một thời gian quy định. Khi làm việc do cải tiến kỹ thuật, tổ I đã vượt mức 10%, tổ II vượt mức 15% nên hết thời gian quy định hai tổ đã làm được 1130 chiếc khẩu trang. Hỏi theo kế hoạch, mỗi tổ phải làm bao nhiêu chiếc khẩu trang? + Cho tam giác ABC nhọn AB < BC nội tiếp đường tròn tâm O. Kẻ BD vuông góc với AC tại D, kẻ DI vuông góc với AB tại I, DH vuông góc với BC tại H. 1) Chứng minh: bốn điểm B, H, D, I cùng nằm trên một đường tròn? 2) Chứng minh: BI.BA = BH.BC và ABD CBO. 3) Tia IH cắt (O) tại K. Chứng minh: tam giác BDK cân?
Đề kiểm tra Toán 9 tháng 3 năm 2023 trường THCS Thanh Quan - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 tháng 3 năm học 2022 – 2023 trường THCS Thanh Quan, quận Hoàn Kiếm, thành phố Hà Nội; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 09 tháng 03 năm 2023. Trích dẫn Đề kiểm tra Toán 9 tháng 3 năm 2023 trường THCS Thanh Quan – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai người công nhân cùng làm việc và hoàn thành trong 6 giờ. Nếu một mình người thứ nhất làm trong 2 giờ, sau đó một mình người thứ hai làm tiếp trong 3 giờ thì hai người làm được 2 5 công việc. Hỏi nếu mỗi người làm một mình thì sau bao nhiêu giờ sẽ hoàn thành công việc? + Cho đường tròn (O), lấy điểm A nằm ngoài đường tròn (O), qua A kẻ hai tiếp tuyến AB và AC với đường tròn (B C là các tiếp điểm). Vẽ cát tuyến AEF (với AE AF) sao cho AE nằm giữa AO và AC. Đoạn thẳng BC cắt AO và AF lần lượt tại H và D. a) Chứng minh: 4 điểm ABOC cùng thuộc một đường tròn. b) Chứng minh: 2 AC AE AF và tứ giác EHOF nội tiếp. c) Đường thẳng qua E và song song với BF cắt AB BC lần lượt tại M và N. Chứng minh: E là trung điểm của MN. + Cho Parabol 2 Pyx và đường thẳng (d): d y x 2. a) Tìm tọa độ giao điểm của đường thẳng (d) và Parabol (P). b) Tính diện tích tam giác OAB với A và B là các giao điểm của (d) với (P). (Biết hoành độ của điểm A nhỏ hơn hoành độ của điểm B).
Đề khảo sát Toán 9 tháng 2 năm 2023 trường THCS Thượng Cát - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 2 năm học 2022 – 2023 trường THCS Thượng Cát, quận Bắc Từ Liêm, thành phố Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề khảo sát Toán 9 tháng 2 năm 2023 trường THCS Thượng Cát – Hà Nội : + Trong kì thi vào THPT, hai trường A và B có tổng cộng 500 học sinh dự thi. Kết quả hai trường đó có 420 học sinh trúng tuyển. Trường A có 80% học sinh trúng tuyển, trường B có 90% học sinh trúng tuyển. Hỏi mỗi trường có bao nhiêu học sinh trúng tuyển. + Chiều cao của một cột cờ là đoạn thẳng AH (hình vẽ). Khi tia nắng mặt trời tạo với mặt đất một góc 680 (góc ABH = 680), người ta đo được khoảng cách từ chân cột cờ H đến điểm B dài 12m. Hãy tính chiều cao cột cờ AH (làm tròn đến chữ số thập phân thứ nhất). + Từ điểm M bên ngoài đường tròn (O;R), vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm). Gọi H là giao điểm của MO và AB. 1) Chứng minh 4 điểm A, O, B, M cùng thuộc một đường tròn. 2) Kẻ đường kính BC của đường tròn (O). Gọi I là trung điểm của AC. Chứng minh tứ giác AHOI là hình chữ nhật. 3) Tiếp tuyến tại C của đường tròn (O) cắt tia BA tại D; tia DI cắt đoạn OC tại K; tia DO cắt đoạn AC ở E. Chứng minh BD CD BO CI và BOD EIK.
Đề khảo sát Toán 9 năm 2022 - 2023 trường THCS Nguyễn Du - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Du, quận Hoàn Kiếm, thành phố Hà Nội; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài: 90 phút (không kể thời gian phát đề); đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào ngày 18 tháng 02 năm 2023. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 trường THCS Nguyễn Du – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai vòi nước cùng chảy vào một cái bể không có nước thì sau 5 giờ sẽ đầy bể. Nếu vòi thứ nhất chảy một mình trong 3 giờ và vòi thứ 2 chảy một mình trong 4 giờ thì cả hai vòi chảy được 2 3 bể. Hỏi nếu mỗi vòi chảy một mình thì sau bao lâu sẽ đầy bể. + Cho hệ phương trình: 2 1 2 3 x y mx y. Tìm m để hệ có nghiệm duy nhất (x;y) sao cho biểu thức P = 3x + y nhận giá trị là số nguyên. + Từ một điểm A nằm ngoài đường tròn (O), kẻ hai tiếp tuyến AB AC với đường tròn (O)(B C là hai tiếp điểm). Gọi H là giao điểm của hai đường thẳng AO và BC. Qua A kẻ cát tuyến ADE với đường tròn (O) (DE O) sao cho tia AE nằm giữa hai tia AO AC và AD AE. a) Chứng minh đường thẳng AO vuông góc với đường thẳng BC. b) Chứng minh 2 AB AD AE. c) Đường phân giác của DBE cắt đường thẳng DE tại M và cắt đường tròn tại điểm thứ hai N. Chứng minh ON ⊥ DE và AB AM. d) Đường thẳng AE cắt đường thẳng BC và đường thẳng ON lần lượt tại K và I. Chứng minh 2 ID IK IA.