Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2019 2020 trường Lương Thế Vinh Hà Nội lần 4

Nội dung Đề thi thử Toán vào năm 2019 2020 trường Lương Thế Vinh Hà Nội lần 4 Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2019 2020 trường Lương Thế Vinh Hà Nội lần 4 Đề thi thử Toán vào năm 2019 2020 trường Lương Thế Vinh Hà Nội lần 4 Ngày Chủ Nhật 19 tháng 5 năm 2019, trường THCS và THPT Lương Thế Vinh, Hà Nội đã tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT môn Toán cho năm học 2019 - 2020 lần thứ 4. Đề thi thử Toán vào lớp 10 năm 2019 - 2020 trường Lương Thế Vinh Hà Nội lần 4 bao gồm 2 trang với 5 bài toán dạng tự luận, thời gian làm bài 120 phút. Một trong những bài toán trong đề thi là: "Để tiến tới kỉ niệm 30 năm ngày thành lập trường, hội cựu học sinh Lương Thế Vinh, Hà Nội đã đăng kí một phòng tại trường để gặp mặt đại diện các khóa. Ban đầu, phòng có 120 ghế được xếp thành từng dãy có số ghế trên mỗi dãy như nhau. Nhưng sau đó phải xếp thêm một dãy và mỗi dãy thêm hai ghế thì mới đủ chỗ cho 156 cựu học sinh tham dự. Hỏi ban đầu phòng có bao nhiêu dãy ghế và mỗi dãy có bao nhiêu ghế?" Bên cạnh đó, còn có các bài toán khác như tính diện tích toàn phần của một hình trụ, chứng minh về tứ giác, tính tích vị trí của dây MN để AB là tiếp tuyến của đường tròn ngoại tiếp tam giác AMN. Đề thi thử Toán vào năm 2019 - 2020 trường Lương Thế Vinh Hà Nội lần 4 là cơ hội để các thí sinh thử sức, rèn luyện và nâng cao kiến thức Toán của mình trước kỳ thi chính thức sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS Lương Thế Vinh - TP. HCM
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS Lương Thế Vinh – TP. HCM gồm 6 bài tập tự luận, đề thi có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O; R) và điểm M nằm ngoài (O). Vẽ 2 tiếp tuyến MA, MB và cát tuyến MCD của (O) (A, B là tiếp điểm, C nằm giữa M và D; A và C nằm khác phía đối với đường thẳng MO). Gọi I là trung điểm CD. [ads] a) Chứng minh: MB^2 = MC.MD b) Chứng minh tứ giác AOIB nội tiếp c) Tia BI cắt (O) tại J. Chứng minh: AD^2 = AJ.MD d) Đường thẳng qua I song song với DB cắt AB tại K, tia CK cắt OB tại G. Tính bán kính đường tròn ngoại tiếp ∆CIG theo R + Hàng tháng một người gửi vào ngân hàng 5.000.000đ với lãi suất 0,6%/tháng. Hỏi sau 15 tháng người đó nhận được số tiền cả gốc lẫn lãi là bao nhiêu? Biết rằng hàng tháng người đó không rút lãi ra.
Tuyển chọn các đề thi tuyển sinh vào lớp 10 môn Toán - Nguyễn Hoàng Nam
+ Được tuyển chọn từ tổng hợp các đề thi hay nhất của các tỉnh thành phố năm học 2013 – 2014. + Có bổ sung một số câu hỏi trọng tâm thường ra thi. + Các bài hình học khó đều có hình vẽ sẵn, được ký hiệu và ghi sơ đồ để hướng dẫn học sinh suy nghĩ.
Tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán
Tài liệu gồm 32 trang tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán. Một số đề có hướng dẫn giải.
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo – Vĩnh Phúc lần 1 gồm 4 câu hỏi trắc nghiệm và 5 câu tự luận, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: + Hai vòi nước cùng chảy vào một cái bể không có nước thì trong 5 giờ sẽ đầy bể. Nếu vòi thứ nhất chảy trong 3 giờ và vòi thứ 2 chảy trong 4 giờ thì được 2/3 bể nước. Hỏi nếu mỗi vòi chảy một mình thì trong bao lâu mới đầy bể. [ads] + Cho đường tròn (O), M là một điểm nằm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB đến đường tròn (O) với A, B là các tiếp điểm; MPQ là một cát tuyến không đi qua tâm của đường tròn (O), P nằm giữa M và Q. Qua P kẻ đường thẳng vuông góc với OA cắt AB, AQ tương ứng tại R, S. Gọi trung điểm đoạn PQ là N. Chứng minh rằng: a) Các điểm M, A, N, O, B cùng thuộc một đường tròn, chỉ rõ bán kính của đường tròn đó. b) PR = RS.