Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình bậc nhất hai ẩn

Nội dung Chuyên đề phương trình bậc nhất hai ẩn Bản PDF Đầu tiên, "Chuyên đề phương trình bậc nhất hai ẩn" là một tài liệu học tập quan trọng với 19 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu này tổng hợp kiến thức quan trọng và cung cấp hướng dẫn chi tiết về cách giải các dạng bài tập tự luận và trắc nghiệm trong chuyên đề phương trình bậc nhất hai ẩn.

Trước hết, tài liệu bao gồm các kiến thức cơ bản như phương trình bậc nhất hai ẩn và tập nghiệm của chúng. Sau đó, tài liệu tập trung vào các dạng bài tập minh họa, bao gồm các dạng như xác định nghiệm của phương trình bậc nhất hai ẩn, biện luận và vẽ đồ thị của hàm số bậc nhất, cũng như tìm nghiệm nguyên của phương trình.

Ngoài ra, tài liệu cũng cung cấp các bài tập trắc nghiệm rèn luyện và tự luyện để học sinh có thể ôn tập và kiểm tra kiến thức của mình. Tài liệu này hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9, đặc biệt trong chương 3 với bài số 1 về phương trình bậc nhất hai ẩn.

Tóm lại, "Chuyên đề phương trình bậc nhất hai ẩn" là một tài liệu hữu ích, cung cấp kiến thức chi tiết và hướng dẫn cụ thể giúp học sinh nắm vững và áp dụng phương trình bậc nhất hai ẩn trong bài tập và bài kiểm tra.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề hệ số góc của đường thẳng y ax + b (a khác 0)
Tài liệu gồm 15 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hệ số góc của đường thẳng y = ax + b (a khác 0) trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. B. Bài tập và các dạng toán. Dạng 1 : Tìm hệ số góc của đường thẳng. Cách giải: Sử dụng các kiến thức liên quan đến vị trí tương đối giữa hai đường thẳng và hệ số góc của đường thẳng. – Hai đường thẳng song song có hệ số góc bằng nhau. – Đường thẳng y = ax + b (a > 0) tạo với tia Ox một góc α thì a = tan α. Dạng 2 : Xác định góc tạo bởi đường thẳng và tia Ox. Cách giải: Để xác định góc giữa đường thẳng (d) và tia Ox, ta làm như sau: Cách 1: Vẽ (d) trên mặt phẳng tọa độ và sử dụng tỉ số lượng giác của tam giác vuông một cách phù hợp. Cách 2: Gọi α là góc tạo bởi tia Ox và (d). Ta có: – Nếu α < 90 thì a > 0 và a = tan α. – Nếu α > 90 thì a < 0 và a = -tan (180 – α). Dạng 3 : Lập phương trình đường thẳng biết hệ số góc. Cách giải: Gọi phương trình đường thẳng cần tìm là (d): y = ax + b. Nếu (d) đi qua A(x0;y0) và biết hệ số góc thì ta thay tọa độ A(x0;y0) vào (d), từ đó tìm được b và (d). BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề nhắc lại và bổ sung các khái niệm về hàm số
Tài liệu gồm 24 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề nhắc lại và bổ sung các khái niệm về hàm số trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm hàm số. a) Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và x gọi là biến số. b) Hàm số có thể cho bằng bảng hoặc công thức. c) Khi y là hàm số của x, ta có thể viết: y f x y gx. d) Khi x thay đổi mà y luôn nhận một giá trị không đổi thì y được gọi là hàm hằng. 2. Giá trị của hàm số, điều kiện xác định của hàm số. – Giá trị của hàm số f x tại điểm 0 x kí hiệu là: y fx 0 0. – Điều kiện xác định của hàm số f x là tất cả các giá trị của x sao cho biểu thức f x có nghĩa. 3. Đồ thị của hàm số. – Đồ thị của hàm số y fx là tập hợp tất cả các điểm M xy trong mặt phẳng tọa độ Oxy sao cho x y thỏa mãn hệ thức: y fx. – Điểm Mx y 0 0 thuộc đồ thị hàm số y fx 0 0 ⇔ y fx. 4. Hàm số đồng biến, hàm số nghịch biến. Cho hàm số: y fx xác định với x R. – Nếu giá trị của x tăng lên mà giá trị y fx tương ứng cũng tăng lên thì hàm số y fx được gọi là đồng biến trên R. – Nếu giá trị của biến x tăng lên mà giá trị của y fx tương ứng giảm đi thì hàm số gọi là nghịch biến trên R. B. Bài tập và các dạng toán. Dạng 1: Tính giá trị của hàm số tại một điểm. Dạng 2: Tìm điều kiện xác định của hàm số. Dạng 3: Xét sự đồng biến và nghịch biến của hàm số. Dạng 4: Biểu diễn tọa độ của một điểm trên mặt phẳng tọa độ Oxy. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề vị trí tương đối giữa hai đường thẳng
Tài liệu gồm 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề vị trí tương đối giữa hai đường thẳng trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Vị trí tương đối giữa hai đường thẳng. 2. Đường thẳng đi qua điểm cố định. 3. Ba đường thẳng đồng quy. B. Bài tập và các dạng toán. Dạng 1: Xét vị trí tương đối của hai đường thẳng. Dạng 2: Xác định phương trình đường thẳng. Cách giải: Để xác định phương trình đường thẳng ta thường làm như sau: Bước 1: Gọi (d): y = ax + b là phương trình đường thẳng cần tìm (a, b là hằng số). Bước 2: Từ giả thiết của đề bài, tìm được a, b từ đó đi đến kết luận. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP TỰ LUYỆN.
Tài liệu Toán 9 chủ đề một số hệ thức về cạnh và đường cao trong tam giác vuông
Tài liệu gồm 43 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề một số hệ thức về cạnh và đường cao trong tam giác vuông trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. Khi giải các bài toán liên quan đến cạnh và đường cao trong tam giác vuông, ngoài việc nắm vững các kiến thức về định lý Talet, về các trường hợp đồng dạng của tam giác, cần phải nắm vững các kiến thức sau: Tam giác ABC vuông tại A, đường cao AH, ta có: 1) Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền. Định lí 1: Trong một tam giác vuông, bình phương mỗi cạnh góc vuông bằng tích của cạnh huyền và hình chiếu của cạnh góc vuông đó trên cạnh huyền. 2) Hệ thức liên qua tới đường cao. Định lí 2: Trong một tam giác vuông, bình phương đường cao ứng với cạnh huyền bằng tích hai hình chiếu của hai cạnh góc vuông trên cạnh huyền. Định lí 3: Trong một tam giác vuông, tích hai cạnh góc vuông bằng tích của cạnh huyền và đường cao tương ứng. Định lí 4: Trong một tam giác vuông, nghịch đảo của bình phương đường cao ứng với cạnh huyền bằng tổng các nghịch đảo của bình phương hai cạnh góc vuông. B. Bài tập và các dạng toán. Dạng 1 : Tính độ dài các đoạn thẳng trong tam giác vuông. Cách giải: Bước 1: Xác định vai trò của đoạn thẳng đã biết và đoạn thẳng cần tính trong tam giác vuông. Cụ thể, xác định xem đoạn thẳng đó là: + Là cạnh góc vuông. + Là đường cao. + Là cạnh huyền. + Là hình chiếu. Bước 2: Từ đó lựa chọn công thức tính phù hợp (trong 6 công thức ở phần lý thuyết). Dạng 2 : Tính chu vi, diện tích các hình. Cách giải: Bước 1: Hình cần tính chu vi, diện tích là hình gì? Bước 2: Viết công thức tính chu vi, diện tích của hình đó. Bước 3: Tính độ dài các đoạn thẳng chưa biết (đã học ở dạng 1). Bước 4: Thay số và tính chu vi, diệc tích. Kết luận. Dạng 3 : Chứng minh các hệ thức liên quan đến tam giác vuông. Cách giải: Sử dụng các hệ thức về cạnh và đường cao một cách hợp lý theo 3 bước: Bước 1: Chọn các tam giác vuông thích hợp chứa các đoạn thẳng có trong hệ thức. Bước 2: Tính các đoạn thẳng đó nhờ hệ thức về cạnh và đường cao. Bước 3: Liên kết các giá trị trên để rút ra hệ thức cần chứng minh. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.