Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hình học không gian - Đặng Thành Nam

Tài liệu gồm 36 trang trình bày phương pháp giải các dạng toán hình học không gian và các ví dụ minh họa có lời giải chi tiết. Các nội dung chính trong tài liệu : Các yếu tố trong tam giác cần nắm vững Các công thức tính thể tích Phương pháp xác định chiều cao của khối chóp + Loại 1: Khối chóp có một cạnh vuông góc với đáy đó chính là chiều cao của khối chóp. + Loại 2: Khối chóp có một mặt bên vuông góc với đáy thì đường cao chính là đường kẻ từ đỉnh khối chóp đến giao tuyến của mặt bên đó với đáy khối chóp. + Loại 3: Khối chóp có hai mặt bên kề nhau cùng vuông góc với đáy thì đường cao chính là giao tuyến của hai mặt bên đó. + Loại 4: Khối chóp có các cạnh bên bằng nhau hoặc cùng tạo với đáy một góc bằng nhau thì đường cao là đường kẻ từ đỉnh khối chóp đến tâm vòng tròn ngoại tiếp đáy + Loại 5: Khối chóp có các mặt bên cùng tạo với đáy một góc bằng nhau thì đường cao là đường kẻ từ đỉnh đến tâm vòng tròn nội tiếp đáy. + Loại 6: Khối chóp có hai mặt bên cùng tạo với đáy một góc bằng nhau thì chân đường cao khối chóp hạ từ đỉnh sẽ nằm trên đường phân giác của góc tạo bởi hai cạnh nằm trên mặt đáy của hai mặt bên. Chẳng hạn khối chóp S.ABCD có hai mặt bên (SAC) và (SAB) cùng tạo với đáy góc a khi đó chân đường cao của khối chóp hạ từ đỉnh S nằm trên đường phân giác của góc BAC. + Loại 7: Khối chóp có hai cạnh bên bằng nhau hoặc cùng tạo với đáy một góc bằng nhau thì chân đường cao hạ từ đỉnh khối chóp nằm trên đường trung trực nối giữa hai giao điểm của hai cạnh bên với đáy. Chẳng hạn khối chóp S.ABCD có cạnh SB, SD khi đó chân đường cao của khối chóp hạ từ đỉnh S nằm trên đường trung trực của BD. Việc xác định chân đường cao của khối chóp giúp ta giải quyết bài toán [ads] + Tính thể tích khối chóp. + Tính góc tạo bởi đường thẳng hoặc mặt phẳng bên với đáy hoặc tính góc giữa hai mặt bên khối chóp(góc tạo bởi cạnh bên và mặt đáy chính là góc tạo bởi cạnh bên và đường thẳng nối chân đường cao khối chóp và giao điểm của cạnh bên với đáy). + Tính khoảng cách từ một điểm tới một mặt phẳng. Phương pháp tính thể tích khối đa diện + Khi xác định được chiều cao khối chóp thì áp dụng cách tính trực tiếp thể tích khối chóp. + Phân chia khối đa diện thành nhiều khối đa diện hơn và dễ tính thể tích hơn. + Dùng tỷ số thể tích. Khoảng cách từ một điểm đến một mặt phẳng Tìm tâm và bán kính mặt cầu ngoại tiếp khối đa diện Ví dụ minh họa có lời giải chi tiết Bài tập áp dụng tự luyện

Nguồn: toanmath.com

Đọc Sách

Mặt cầu ngoại tiếp, nội tiếp khối đa diện - Lê Bá Bảo
Tài liệu gồm 22 trang trình bày phương pháp giải toán và bài tập trắc nghiệm có lời giải chi tiết chủ đề mặt cầu ngoại tiếp, nội tiếp khối đa diện. MẶT CẦU NGOẠI TIẾP, NỘI TIẾP KHỐI ĐA DIỆN I – PHƯƠNG PHÁP 1. Chứng minh mặt cầu S(O;R) ngoại tiếp đa diện Thông thường ta chứng minh mặt cầu đi qua tất cả các đỉnh của đa diện thông qua một số nhận xét quan trọng sau: + Điểm M thuộc S(O;R) ⇔ OM = R. + Điểm M thuộc S(O;R) khi chỉ khi M nhìn đường kính của mặt cầu dưới 1 góc vuông. 2. Điều kiện cần và đủ + Để một hình chóp có mặt cầu ngoại tiếp là đáy của hình chóp có đường tròn ngoại tiếp. + Để một hình lăng trụ có mặt cầu ngoại tiếp là hình lăng trụ đó phải là hình lăng trụ đứng và có đáy lăng trụ là một đa giác nội tiếp. 3. Mặt phẳng trung trực của đoạn thẳng Cho đoạn thẳng AB. Mặt phẳng (α) được gọi là mặt phẳng trung trực của đoạn thẳng AB khi mp (α) đi qua trung điểm I của AB và vuông góc với AB. Lưu ý : (α) là tập hợp tất cả các điểm M trong không gian cách đều A, B. [ads] Dạng toán: CHỨNG MINH KHỐI ĐA DIỆN NỘI TIẾP MẶT CẦU 1. Thuật toán 1: SỬ DỤNG MỘT TRỤC XÁC ĐỊNH TÂM MẶT CẦU NGOẠI TIẾP ĐA DIỆN Cho hình chóp SA1A2 … An (thoả mãn điều kiện tồn tại mặt cầu ngoại tiếp). Thông thường, để xác định mặt cầu ngoại tiếp hình chóp ta thực hiện theo hai bước: + Bước 1: Xác định tâm của đường tròn ngoại tiếp đa giác đáy. Dựng Δ: trục đường tròn ngoại tiếp đa giác đáy. + Bước 2: Lập mặt phẳng trung trực (α) của một cạnh bên. Lúc đó: + Tâm O của mặt cầu: Δ ∩ mp(α) = O. + Bán kính: R = OA (= OS). Tuỳ vào từng trường hợp. 2. Thuật toán 2: SỬ DỤNG HAI TRỤC XÁC ĐỊNH TÂM MẶT CẦU NGOẠI TIẾP ĐA DIỆN Cho hình chóp SA1A2 … An (thỏa mãn điều kiện tồn tại mặt cầu ngoại tiếp). Thông thường, để xác định mặt cầu ngoại tiếp hình chóp ta thực hiện theo hai bước: + Bước 1: Xác định tâm của đường tròn ngoại tiếp đa giác đáy. Dựng Δ: trục đường tròn ngoại tiếp đa giác đáy. + Bước 2: Xác định trục d của đường tròn ngoại tiếp một mặt bên (dễ xác định) của khối chóp. Lúc đó: + Tâm I của mặt cầu: Δ ∩ d = I. + Bán kính: R = IA (= IS). Tuỳ vào từng trường hợp. II – BÀI TẬP TRẮC NGHIỆM MINH HỌA III -BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN
Một số công thức tính bán kính mặt cầu - Trần Lê Quyền
Tài liệu gồm 8 trang với phần giới thiệu công thức tính, ví dụ mẫu có lời giải và các bài tập trắc nghiệm tính bán kính mặt cầu. Trích dẫn tài liệu : + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a, BC = 2a. Cạnh bên SA vuông góc với mặt đáy và SA = a√3. Tính bán kính của mặt cầu ngoại tiếp hình chóp S.ABC. + Cho tứ diện OABC có A, B, C thay đổi nhưng luôn thỏa mãn OA, OB, OC đôi một vuông góc và 2OA+OB +OC = 3. Giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp OABC là? + Cho ba tia Ox, Oy, Oz đôi một vuông góc với nhau. Gọi C là điểm cố định trên Oz, đặt OC = 1; các điểm AB, thay đổi trên OxOy, sao cho OA + OB = OC. Tìm giá trị bé nhất của bán kính mặt cầu ngoại tiếp tứ diện OABC. [ads] + Cho hình chóp tam giác đều S.ABC có đáy ABC là tam giác đều cạnh a, SA = 2a/√3. Gọi D là điểm đối xứng của A qua BC. Tính bán kính của mặt cầu ngoại tiếp hình chóp S.BCD. + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Đường thẳng BC tạo với (SAC) một góc 30◦. Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABC.
Chuyên đề hình học không gian dành cho học sinh trung bình - yếu
Kỳ thi THPT Quốc Gia 2016 – 2017 đã cận kề, từ nhu cầu thực tế ôn luyện của các học sinh trung bình và yếu, các thầy cô giáo ở khắp mọi miền trong cả nước đã biên soạn bộ tài liệu ÔN TẬP KỲ THI THPTQG dành cho đối tượng học sinh trung bình. Chuyên đề HÌNH HỌC KHÔNG GIAN được nhóm 04 thầy cô: Lê Văn Định, Dương Phước Sang, Phùng Hoàng Em, Trần Thị Thu Thảo biên soạn nội dung. Hỗ trợ hình học thầy Lê Quang Hòa. Chuyên đề bao gồm 04 nội dung chính: + Phần 1: Đa diện – Thể tích khối đa diện + Phần 2: Mặt nón – Khối nón + Phần 3: Mặt cầu – Khối cầu + Phần 4: Mặt trụ – Khối trụ [ads] Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình. Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình.
Chuyên đề mặt nón - mặt trụ - mặt cầu - Trần Đình Cư
Tài liệu gồm 58 trang với lý thuyết và bài tập trắc nghiệm chủ đề mặt nón, mặt trụ và mặt cầu, các bài tập đều có đáp án và lời giải chi tiết. HÌNH NÓN, MẶT NÓN, KHỐI NÓN 1. Định nghĩa mặt nón Cho đường thẳng Δ. Xét một đường thẳng d cắt Δ tại O và không vuông góc với Δ. Mặt tròn xoay sinh bởi đường thẳng d như thế khi quay quanh Δ gọi là mặt nón tròn xoay (hay đơn giản là mặt nón). 2. Hình nón tròn xoay Cho ΔOIM vuông tại I quay quanh cạnh góc vuông OI thì đường gấp khúc OIM tạo thành một hình, gọi là hình nón tròn xoay (gọi tắt là hình nón). 3. Công thức diện tích và thể tích của hình nón Cho hình nón có chiều cao là h, bán kính đáy r và đường sinh là l thì có: Diện tích xung quanh: Sxq=π.r.l Diện tích đáy (hình tròn): Sd = πr^2 Diện tích toàn phần hình tròn: S = Sd + Sxq Thể tích khối nón: V = 1/3.π.r^2.h 4. Tính chất [ads] MẶT TRỤ – HÌNH TRỤ VÀ KHỐI TRỤ 1. Mặt trụ Mặt trụ là hình tròn xoay sinh bởi đường thẳng l khi xoay quanh đường thẳng song song và cách l một khoảng R. Lúc đó, được gọi là trục, R gọi là bán kính, l gọi là đường sinh. Mặt trụ là tập hợp tất cả những điểm cách đường thẳng cố định một khoảng R không đổi. 2. Hình trụ Hình trụ là hình giới bạn bởi mặt trụ và hai đường tròn bằng nhau, là giao tuyến của mặt trụ và 2 mặt phẳng vuông góc với trục. Hình trụ là hình tròn xoay khi sinh bởi bốn cạnh của hình một hình chữ nhật khi quay xung quanh một đường trung bình của hình chữ nhật đó. 3. Khối trụ Khối trụ là hình trụ cùng với phần bên trong của hình trụ đó. MẶT CẦU – HÌNH CẦU VÀ KHỐI CẦU 1. Định nghĩa và các khái niệm 2. Vị trí tương đối giữa mặt cầu và mặt phẳng 3. Một sô dạng mặt cầu ngoại tiếp thường gặp Dạng 1. Hình chóp có các đỉnh nhìn hai đỉnh còn lại dưới 1 góc vuông Dạng 2. Hình chóp có các cạnh bên bằng nhau Dạng 3. Mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy Dạng 4. Mặt cầu ngoại tiếp hình chóp có mặt bên vuông góc với mặt đáy