Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

105 bài toán PT - HPT - BPT trong đề thi vào 10 môn Toán năm học 2021 - 2022

Tài liệu gồm 17 trang, được tổng hợp bởi thầy giáo Đặng Quang Thịnh, tuyển tập 105 bài toán về phương trình – hệ phương trình – bất phương trình (PT – HPT – BPT) trong đề thi vào 10 môn Toán năm học 2021 – 2022, giúp học sinh lớp 9 ôn tập để chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán sắp tới. Trích dẫn tài liệu 105 bài toán PT – HPT – BPT trong đề thi vào 10 môn Toán năm học 2021 – 2022 : + Cho phương trình: x2 − (m − 2)x + m + 1 (1) a) Giải phương trình (1) với m = −3 b) Chứng tỏ phương trình (1) luôn có nghiệm với mọi số thực m c) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 là độ dài hai cạnh góc vuông của một tam giác vuông có độ dài đường cao ứng với cạnh huyền là h = 2√5. + Theo các chuyên gia về sức khoẻ, người trưởng thành cần đi bộ từ 5000 bước mỗi ngày sẽ rất tốt cho sức khoẻ. Để rèn luyện sức khoẻ, anh Sơn và chị Hà đề ra mục tiêu mỗi ngày một người cần phải đi bộ ít nhất 6000 bước. Hai người đi bộ ở công viên và thấy rằng, nếu cùng nhau đi trong 2 phút thì anh Sơn bước nhiều hơn chị Hà 20 bước. Hai người cùng giữ nguyên tốc độ như vậy nhưng chị Hà đi trong 5 phút thì lại nhiều hơn anh Sơn đi trong 3 phút là 160 bước. Hỏi mỗi ngày anh Sơn và chị Hà cùng đi bộ trong 1 giờ thì họ dã đạt được số bước tối thiểu mà mục tiêu đề ra chưa? (Giả sử tốc độ đi bộ hằng ngày của hai người không đổi). + Hằng ngày bạn Mai đi học bằng xe đạp, quãng đường từ nhà đến trường dài 3km. Hôm nay, xe đạp hư nên Mai nhờ mẹ chở đi đến trường bằng xe máy với vận tốc lớn hơn vận tốc khi đi xe đạp là 24km/h, cùng một thời điểm khởi hành như mọi ngày nhưng Mai đã đến trường sớm hơn 10 phút. Tính vận tốc của Mai khi đi đến trường bằng xe đạp.

Nguồn: toanmath.com

Đọc Sách

123 bài toán hàm số bậc nhất và đường thẳng - Lương Tuấn Đức
Trong khuôn khổ Toán học sơ cấp nói chung và Đại số phổ thông nói riêng, Hàm số và Đồ thị là dạng toán cơ bản nhưng thú vị, có phạm vi trải rộng, phong phú, liên hệ chặt chẽ với nhiều bộ phận khác của toán học sơ cấp cũng như toán học hiện đại. Tại Việt Nam, nội dung hàm số và đồ thị là một bộ phận hữu cơ, quan trọng, được phổ biến giảng dạy chính thức trong chương trình sách giáo khoa Toán bước đầu là lớp 7, tiếp sau là các lớp 9, 10, 11, 12 song song với các khối lượng kiến thức liên quan. Các kỹ năng đối với hàm số, đồ thị được luyện tập một cách đều đặn, bài bản và hệ thống sẽ rất hữu ích, không chỉ trong bộ môn Toán mà còn phục vụ đắc lực cho các môn khoa học tự nhiên khác như Hóa học, Vật lý, Địa lý, Sinh học …. Đối với chương trình Đại số lớp 9 THCS hiện hành, hàm số và đồ thị giữ vai trò chính yếu trong Đề thi kiểm tra chất lượng học kỳ, Đề thi tuyển sinh lớp 10 THPT hệ đại trà và hệ THPT Chuyên. Đối với các lớp cao hơn, nội dung này sẽ được mở rộng trở thành kiến thức chính yếu trong chương trình Đại số – Giải tích xuyên suốt các lớp 10, 12, bao gồm hàm số bậc cao và bài toán hình học giải tích, một bài toán mang tính phân loại cao trong kỳ thi tuyển sinh đại học – cao đẳng, kỳ thi THPT Quốc gia hàng năm, một kỳ thi đầy cam go, kịch tính và bất ngờ, nó lại là một câu rất được quan tâm của các bạn học sinh, phụ huynh, các thầy cô, giới chuyên môn và đông đảo bạn đọc yêu Toán. Trong phạm vi hàm số và đồ thị, tài liệu này tác giả tập trung trình bày một lớp các bài toán khảo sát sự biến thiên, vẽ đồ thị hàm số bậc nhất (tức là dạng đường thẳng), vấn đề vị trí tương đối giữa hai đường thẳng, hoặc vị trí tương đối giữa đường thẳng và đường cong, một số bài toán gắn kết yếu tố lượng giác, hình học giải tích. Như đã nói ở trên, mục đích khoa học chính của tài liệu nhằm phục vụ cho quá trình dạy và học, kiểm tra, kỳ thi tuyển sinh lớp 9 THPT, ngoài ra tác giả đã cố gắng nâng cao, mở rộng và phát triển từng bài toán theo đúng nội dung chủ đạo hàm số bậc THPT, chủ quan cho rằng điều này sẽ góp phần giới thiệu, định hướng, phá bỏ bỡ ngỡ, tạo ra cái nhìn đa chiều đối với bài toán đồ thị và hàm số, với những nội dung như cực trị, tương giao, tiếp tuyến, giá trị lớn nhất nhỏ nhất hàm số mai sau, thiết nghĩ yếu tố này góp phần làm tiền đề tư duy hàm số, tư duy hình học giải tích ở cấp THPT trong tương lai các em học sinh THCS, ngoài ra còn mang tính mở rộng, đào sâu, hướng đến mong muốn bạn đọc nghiên cứu đầy đủ về đường thẳng, tăng cường sự sáng tạo, đột phá, phát huy hơn nữa trong toán học và các ứng dụng trong hàng loạt các môn khoa học tự nhiên. [ads] I. KIẾN THỨC CHUẨN BỊ 1. Kỹ thuật nhân, chia đơn thức, đa thức, hằng đẳng thức. 2. Nắm vững các phương pháp phân tích đa thức thành nhân tử. 3. Nắm vững các phương pháp giải, biện luận phương trình bậc nhất, bậc hai, bậc cao, phương trình chứa ẩn ở mẫu. 4. Sử dụng thành thạo các ký hiệu toán học, logic (ký hiệu hội, tuyển, kéo theo, tương đương). 5. Kiến thức nền tảng về mặt phẳng tọa độ, hàm số bậc nhất, đường thẳng. 6. Kỹ năng vẽ đồ thị hàm số. 7. Kiến thức nền tảng về hệ số góc của đường thẳng, công thức độ dài, hệ thức lượng trong tam giác vuông, công thức lượng giác, đường tròn, hàm số bậc hai parabol, phương trình nghiệm nguyên. 8. Kiến thức nền tảng về giá trị tuyệt đối, căn thức, ước lượng – đánh giá, hàm số – đồ thị, bất đẳng thức – cực trị, giá trị lớn nhất, giá trị nhỏ nhất.
Chuyên đề bất đẳng thức
Tài liệu gồm 28 trang trình bày các phương pháp chứng minh bất đẳng thức và ứng dụng của bất đẳng thức
Tài liệu ôn thi tuyển sinh vào lớp 10 môn Toán - Trần Quốc Nghĩa
Tài liệu gồm 160 trang với nội dung gồm các phần: Phần 1. BÀI TẬP THEO CHUYÊN ĐỀ + Vấn đề 1. CĂN THỨC + Vấn đề 2. HÀM SỐ VÀ ĐỒ THỊ I. Hàm số bậc nhất II. Hàm số bậc hai III. Sự tương giao giữa parabol (P) và đường thẳng (d) + Vấn đề 3. PHƯƠNG TRÌNH I. Phương trình bậc nhất II. Phương trình bậc hai III. Phương trình trùng phương IV. Phương trình chứa căn thức và trị tuyệt đối V. Phương trình chứa tham số VI. Phương trình chứa ẩn ở mẫu. Phương trình bậc cao [ads] + Vấn đề 4. HỆ PHƯƠNG TRÌNH I. Giải hệ phương trình II. Hệ phương trình chứa tham số + Vấn đề 5. BẤT PHƯƠNG TRÌNH + Vấn đề 6. GIẢI TOÁN BẰNG CÁCH LẬP PT – HPT + Vấn đề 7. HÌNH HỌC I. Hệ thức lượng trong tam giác II. Đường tròn III. Hình trụ – Hình nón – Hình cầu + Vấn đề 8. BÀI TẬP TỔNG HỢP Phần 2. ĐỀ THI BÌNH DƯƠNG Phần 3. ĐỀ THI TPHCM Phần 4. ĐỀ THI CÁC TỈNH NĂM 2015 – 2016
Hướng dẫn giải một số bài toán bất đẳng thức ôn thi vào lớp 10
Tài liệu gồm 9 trang, trình bày lời giải chi tiết các bài toán bất đẳng thức (BĐT) thường gặp trong đề thi tuyển sinh vào lớp 10.