Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình thang cân

Tài liệu gồm 19 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình thang cân, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT 1. Khái niệm: Hình thang cân là hình thang có hai góc kề một đáy bằng nhau. 2. Tính chất: + Trong hình thang cân, hai cạnh bên bằng nhau. + Trong hình thang cân, hai đuờng chéo bằng nhau. 3. Dấu hiệu nhận biết: + Hình thang có hai góc kề một cạnh đáy bằng nhau là hình thang cân. + Hình thang có hai đường chéo bằng nhau là hình thang cân. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính số đo góc, độ dài cạnh và diện tích hình thang cân. Phương pháp giải: Sử dụng tính chất hình thang cân về cạnh góc, đường chéo và công thức tính diện tích hình thang để tính toán. Dạng 2. Chứng minh hình thang cân. Phương pháp giải: Sử dụng dấu hiệu nhận biết hình thang cân. Dạng 3. Chứng minh các cạnh bằng nhau, các góc bằng nhau trong hình thang cân. B. PHIẾU BÀI TỰ LUYỆN

Nguồn: toanmath.com

Đọc Sách

Đề cương học kỳ 2 Toán 8 năm 2022 - 2023 trường THCS Long Toàn - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập kiểm tra cuối học kỳ 2 môn Toán 8 năm học 2022 – 2023 trường THCS Long Toàn, tỉnh Bà Rịa – Vũng Tàu. I. CÁC KIẾN THỨC TRỌNG TÂM A. ĐẠI SỐ: + Phương trình bậc nhất một ẩn và phương trình đưa được về dạng ax + b = 0. + Phương trình tích A(x).B(x) = 0. + Phương trình chứa ẩn ở mẫu. + Giải bài toán bằng cách lập phương trình. + Bất phương trình bậc nhất một ẩn. + Phương trình có chứa dấu giá trị tuyệt đối. B. HÌNH HỌC: + Định lý Ta-lét. + Hệ quả của định lý Ta-lét. + Tính chất đường phân giác của tam giác. + Các trường hợp đồng dạng của hai tam giác và tính chất của hai tam giác đồng dạng. II. CÁC ĐỀ THAM KHẢO
Đề cương học kì 2 Toán 8 năm 2022 - 2023 trường THCS Nguyễn Du - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập cuối học kì 2 môn Toán 8 năm học 2022 – 2023 trường THCS Nguyễn Du, quận Hoàn Kiếm, thành phố Hà Nội. A. LÝ THUYẾT PHẦN ĐẠI SỐ: – Từ câu 1 đến câu 6 trang 32 – 33 – SGK tập 2 – Từ câu 1 đến câu 5 trang 52 – SGK tập 2. PHẦN HÌNH HỌC: – Từ câu 1 đến câu 9 trang 89 – SGK tập 2. – Bảng KT về hình lăng trụ đứng, hình hộp, hình chóp đều trang 126 – SGK tập 2. B. BÀI TẬP THAM KHẢO I. ĐẠI SỐ. Dạng 1: Giải phương trình. Dạng 2: Giải bất phương trình và biểu diễn tập nghiệm trên trục số. Dạng 3: Rút gọn biểu thức và một số bài toán sử dụng kết quả rút gọn. Dạng 4: Giải bài toán bằng cách lập phương trình. II. PHẦN HÌNH HỌC.
Đề cương HK2 Toán 8 năm 2022 - 2023 trường THCS Hoàng Hoa Thám - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập cuối học kì 2 môn Toán 8 năm học 2022 – 2023 trường THCS Hoàng Hoa Thám, thành phố Hà Nội. A. KIẾN THỨC TRỌNG TÂM 1. Đại số. – Biến đổi đơn giản biểu thức. – Giải phương trình và bất phương trình. – Giải bài toán bằng cách lập phương trình. 2. Hình học. – Công thức tính diện tích đa giác. – Định lí Ta-lét và hệ quả của định lí Ta-let. Tính chất đường phân giác của tam giác. – Các trường hợp đồng dạng của tam giác, tam giác vuông. – Hình hộp chữ nhật. B. BÀI TẬP THAM KHẢO 1. Đại số. + Dạng 1: Rút gọn biểu thức. + Dạng 2: Giải phương trình và bất phương trình. + Dạng 3: Giải bài toán bằng cách lập phương trình. 2. Hình học.
Đề cương học kỳ 2 Toán 8 năm 2022 - 2023 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn ôn tập kiểm tra cuối học kỳ 2 môn Toán 8 năm học 2022 – 2023 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội. I. KIẾN THỨC TRỌNG TÂM A. Đại số. – Phân thức đại số. – Bất phương trình bậc nhất một ẩn. – Giải toán bằng cách lập phương trình: Dạng toán về năng suất, toán có nội dung hình học, toán phần trăm. B. Hình học. – Các trường hợp đồng dạng của hai tam giác. II. CÁC DẠNG BÀI TẬP Dạng 1. Các bài toán rút gọn câu hỏi phụ. Dạng 2. Giải bài toán bằng cách lập phương trình. Dạng 3. Giải bất phương trình. Dạng 4. Hình học. Dạng 5. Các bài toán nâng cao.