Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 1 Toán 9 năm 2022 - 2023 trường THCS Nguyễn Văn Cừ - Quảng Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 1 môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Văn Cừ, thành phố Uông Bí, tỉnh Quảng Ninh; đề thi được biên soạn theo hình thức 30% trắc nghiệm kết hợp 70% tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề). Trích dẫn Đề học kì 1 Toán 9 năm 2022 – 2023 trường THCS Nguyễn Văn Cừ – Quảng Ninh : + Cho hai tiếp tuyến của một đường tròn cắt nhau tại một điểm. Chọn khẳng định sai? A. Khoảng cách từ điểm đó đến hai tiếp điểm là bằng nhau. B. Tia nối từ điểm đó tới tâm là tia phân giác của góc tạo bởi hai bán kính. C. Tia nối từ tâm tới điểm đó là tia phân giác của góc tạo bởi hai bán kính. D. Tia nối từ điểm đó tới tâm là tia phân giác của góc tạo bởi tiếp tuyến. + Chim Cắt là loài chim lớn, có bản tính hung dữ, đặc điểm nổi bậc nhất của chúng là đôi mặt rực sáng, bộ móng vuốt và chiếc mỏ sắc như dao nhọn, chúng có khả năng lao nhanh như tên bắn và là nỗi khiếp đảm của không ít các loài chim trời, rắn và các loài thú nhỏ như chuột, thỏ, sóc a) Từ vị trí cao 16m so với mặt đất, đường bay lên của chim cắt được cho bởi công thức: y = 30x + 16 (trong đó y là độ cao so với mặt đất, x là thời gian tính bằng giây x 0). Hỏi nếu có muốn bay lên để đậu trên một núi đá cao 256m so với mặt đất thì tốn bao nhiêu giây? b) Từ vị trí cao 256m so với mặt đất hãy tìm độ cao khi nó bay xuống sau 3 giây. Biết đường bay xuống của nó được cho bằng công thức: y = -40x + 256. + Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn. Từ A kẻ hai tiếp tuyến AB AC với đường tròn O (B C là hai tiếp điểm). a) Chứng minh bốn điểm A BO C cùng thuộc một đường tròn. b) Vẽ đường kính BD của đường tròn O AD cắt đường tròn O tại E. Gọi H là giao điểm của BC và OA, K là trung điểm của ED. Chứng minh rằng: 2 AB AE AD. c) Gọi F là giao điểm của OK và BC. Chứng minh FD là tiếp tuyến của đường tròn O.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Thạch Thán - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Thạch Thán – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Thạch Thán – Hà Nội : + Cho đường thẳng (d) có phương trình y = ax + b. a) Tìm a, b biết đồ thị hàm số đi qua điểm A(0; 2) và điểm B (-2; -4). b) Tìm phương trình đường thẳng (d’) song song với (d), cắt trục hoành tại điểm 3, cắt trục tung tại C. Tính độ dài AC. + Cho tam giác ABC vuông tại A, đường cao AH, AB = 8cm, AC = 15cm. a) Tính BC, AH, HC. b) Chứng minh SinB = CosC c) Gọi P, Q lần lượt là hình chiếu của H trên AB, AC. Kẻ tiếp tuyến CM với đường tròn ngoại tiếp tứ giác APHQ (M thuộc cung nhỏ AQ). Chứng minh CM2 = CQ.CA. d) Tính PA.PB + AQ.QC. + Thực hiện các phép tính sau.
Đề thi HK1 Toán 9 năm 2021 - 2022 trường THCS THPT Lê Quý Đôn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HK1 Toán 9 năm 2021 – 2022 trường THCS & THPT Lê Quý Đôn – Hà Nội.
Đề thi cuối học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Bế Văn Đàn - Hà Nội
Đề kiểm tra cuối học kỳ 1 môn Toán lớp 9 năm học 2021 – 2022 trường THCS Bế Văn Đàn, quận Đống Đa, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút; kỳ thi được diễn ra vào sáng thứ Năm ngày 06 tháng 01 năm 2022.
Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Cao Bá Quát - Hà Nội
Đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Cao Bá Quát – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Cao Bá Quát – Hà Nội : + Cho (O;R), từ điểm S ở ngoài đường tròn (O;R) sao cho OS = 2R, kẻ hai tiếp tuyến SA, SB với đường tròn (A, B là tiếp điểm), gọi H là giao điểm của SO và AB. a) Chứng minh: SO ⊥ AB. b) Chứng minh: OH.OS = R2. c) Chứng minh: ∆SBA đều. d) Vẽ cát tuyến SMN của (O;R), xác định vị trí của cát tuyến SMN để SM + SN đạt giá trị nhỏ nhất. + Cho hàm số bậc nhất : y = (m – 2)x + 3 với m là tham số. a) Tìm m đề hàm số đồng biến. b) Vẽ đồ thị hàm số trên khi m = 3. c) Tính diện tích của tam giác giới hạn bởi đồ thị vừa vẽ ở câu b và hai trục tọa độ. + Cho hai biểu thức 4 x A x 2 và 2 2 B x 2 x 2 với x 0 x 4. a) Tính giá trị của biểu thức A khi x 16. b) Rút gọn biểu thức B. c) Tìm các giá trị nguyên của x để khi 1 B A 4.