Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Hà Nam

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 môn Toán THPT năm 2019 - 2020 sở GD&ĐT Hà Nam Đề thi tuyển sinh vào lớp 10 môn Toán THPT năm 2019 - 2020 sở GD&ĐT Hà Nam Trong quá trình học tập, kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Hà Nam tổ chức là một cột mốc quan trọng đối với học sinh trên địa bàn. Môn thi Toán luôn đóng vai trò quan trọng, vì vậy chúng tôi xin trình bày nội dung đề thi và lời giải chi tiết của đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 - 2020 môn Toán sở GD&ĐT Hà Nam. Đề thi bao gồm các bài toán chất lượng, từ đơn giản đến phức tạp, để thử thách khả năng tư duy và giải quyết vấn đề của thí sinh. Ví dụ, trong một câu hỏi, thí sinh cần chứng minh tứ giác ACMO nội tiếp, chứng minh tam giác COD vuông tại O, chứng minh AC.BD = R^2 và chứng minh I là trung điểm của MN. Mỗi câu hỏi đều đề cao tính logic và sự khéo léo trong suy luận của thí sinh. Ngoài ra, đề thi còn đưa ra các bài toán về parabol và hình nón, để thúc đẩy sự sáng tạo của thí sinh trong việc áp dụng kiến thức vào thực tế. Thí sinh cần tính toán chính xác để đưa ra câu trả lời đúng và logic. Trong tổng thể, đề thi tuyển sinh vào lớp 10 môn Toán sở GD&ĐT Hà Nam năm 2019 - 2020 không chỉ đánh giá kiến thức mà còn đánh giá khả năng tư duy, logic, và sáng tạo của thí sinh. Qua đó, kỳ thi tuyển sinh trở thành cơ hội để các em thể hiện khả năng và tiềm năng của mình trong môi trường học tập và thi cử.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Quảng Ngãi
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Ngãi gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Ngãi : + Cho tam giác ABC vuông tại A, có đường cao AH. Tia phân giác của HAC cắt HC tại D. Gọi K là hình chiếu vuông góc của D trên AC. Tính AB, biết BC = 25 cm và DK = 6 cm. + Cho tam giác nhọn ABC có AB < AC, nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC. Đường thẳng AH cắt BC tại D và cắt đường tròn (O) tại điểm thứ hai là K. Gọi L là giao điểm của hai đường thẳng CH và AB, S là giao điểm của hai đường thẳng BH và AC. (a) Chứng minh tứ giác BCSL nội tiếp và BC là đường trung trực của đoạn thẳng HK. (b) Gọi M là trung điểm của BC, đường thẳng OM cắt các đường thẳng AB, AC lần lượt tại P, Q. Gọi N là trung điểm của PQ. Chứng minh hai đường thẳng HM và AN cắt nhau tại một điểm nằm trên đường tròn (O). + Cho 16 số nguyên dương lớn hơn 1 và nhỏ hơn 2021, đôi một nguyên tố cùng nhau. Chứng minh rằng trong 16 số trên có ít nhất một số là số nguyên tố.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Phú Yên
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Phú Yên gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Phú Yên : + Cho đường tròn (O; R), lấy điểm A nằm ngoài đường tròn sao cho OA = 2R. Từ A kẻ hai tiếp tuyến AM, AN (M, N là các tiếp điểm) và cát tuyến ABC (AB < AC). Gọi I là trung điểm của BC, T là giao điểm của NI với (O) ( T khác N). 1. Chứng minh rằng tam giác AMN đều. 2. Chứng minh rằng MT // AC. 3. Tiếp tuyến của (O) tại B, C cắt nhau ở K. Chứng minh rằng ba điểm K, M, N thẳng hàng. + Tìm cặp số (x; y) thỏa mãn phương trình x2 + y2 + 8x + y − 2xy + 3 = 0 sao cho y đạt giá trị lớn nhất. + Cho hình vuông ABCD . Gọi E, F lần lượt là trung điểm của CD, AD và G là giao điểm của AE và BF. 1. Chứng minh rằng FED = FGD. 2. Gọi H là điểm đối xứng với F qua G, I là giao điểm của BD và EF. Đường thẳng qua D, song song với BF cắt HI tại K. Chứng minh rằng K là trực tâm của tam giác G.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Ninh Bình
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Ninh Bình gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Ninh Bình : + Cho đường tròn (T) tâm O và dây cung AB cố định (O /∈ AB). P là điểm di dộng trên đoạn thẳng AB (P khác A, B và P khác trung điểm của đoạn thẳng AB). Đường tròn (T1) tâm C đi qua điểm P tiếp xúc với đường tròn (T) tại A. Đường tròn (T2) tâm D đi qua P tiếp xúc với đường tròn (T) tại B. Hai đường tròn (T1) và (T2) cắt nhau tại N (N khác P). Gọi (d1) là tiếp tuyến chung của (T) với (T1) tại A, (d2) là tiếp tuyến của (T) với (T2) tại B, (d1) cắt (d2) tại điểm Q. 1. Chứng minh tứ giác AOBQ nội tiếp đường tròn. 2. Chứng minh ANP = BNP và bốn điểm O, D, C, N cùng nằm trên một đường tròn. 3. Chứng minh rằng đường trung trực của đoạn ON luôn đi qua một cố định khi P di động trên đoạn thẳng AB (P khác A, B và P khác trung điểm của đoạn thẳng AB). + Tìm tất cả các số nguyên n sao cho n2 + 2022 là số chính phương. + Cho phương trình x2 − 2mx + 2m − 1 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 (x1 < x2) thỏa mãn 4×1 = x22.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Tiền Giang
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Tiền Giang gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Tiền Giang : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) : y = x2 và đường thẳng (d) : y = 2mx + 1, m là tham số. Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt A , B sao cho OI = √10, với I là trung điểm của đoạn thẳng AB. + Cho phương trình bậc hai (x − a)(x − b) + (x − b)(x − c) + (x − c)(x − a) = 0 có nghiệm kép, trong đó x là ẩn số và a, b, c là các tham số. Chứng minh rằng a = b = c. + Cho x, y là các số thực thay đổi thỏa mãn điều kiện x2 + y2 + xy = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = x2 + y2 − xy.