Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT thành phố Vinh Nghệ An

Nội dung Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT thành phố Vinh Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG lớp 8 môn Toán năm 2020-2021 phòng GD&ĐT thành phố Vinh Nghệ An Đề thi HSG lớp 8 môn Toán năm 2020-2021 phòng GD&ĐT thành phố Vinh Nghệ An Ngày ... tháng 04 năm 2021, Phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An đã tổ chức kỳ thi khảo sát chất lượng học sinh giỏi môn Toán lớp 8 năm học 2020-2021. Đề thi HSG Toán lớp 8 năm 2020-2021 của phòng GD&ĐT thành phố Vinh - Nghệ An bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Dưới đây là một số câu hỏi trích dẫn từ đề thi HSG Toán lớp 8 năm 2020-2021 của phòng GD&ĐT thành phố Vinh - Nghệ An: + Chứng minh rằng: 11^100 - 1 chia hết cho 1000. + Cho đa thức f(x) chia cho đa thức x - 2 dư 7, chia cho đa thức x^2 + 1 dư 3x + 5. Hỏi dư trong phép chia đa thức f(x) cho đa thức (x^2 + 1)(x - 2) là bao nhiêu? + Trong tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Điểm D trên tia HC sao cho HD = HA. Đường vuông góc với BC tại D cắt AC ở E. a. Chứng minh rằng tam giác BEC đồng dạng với tam giác ADC. b. Gọi M là trung điểm của BE. Chứng minh rằng BM.BE = BC.BH. Tính số đo góc AHM. c. Tia AM cắt BC tại G. Chứng minh rằng GB.AH + GB.HC = BC.HD. Đây là một số ví dụ về những câu hỏi thú vị và đầy thách thức trong đề thi HSG Toán lớp 8 năm 2020-2021 của phòng GD&ĐT thành phố Vinh - Nghệ An. Chắc chắn rằng các em học sinh đã cần phải chuẩn bị kỹ lưỡng và tự tin để đối mặt với những bài toán này. Chúc các em thành công trong kỳ thi của mình!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 8 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp thành phố môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho tam giác ABC nhọn (AB < AC), đường cao AD, CF cắt nhau tại H. Gọi M là điểm thuộc đoạn thẳng DC sao cho BM < 2BD. Qua A vẽ đường thẳng vuông góc với AM cắt CH tại K. a. Chứng minh rằng: KAH AMB. b. Lấy G đối xứng với H qua K. Gọi P là trung điểm của BM. Chứng minh: AG AP. c. Khi BM = 2MC, gọi N là giao điểm của AG và BH. Chứng minh: AG = 2AN. + Cho hình vuông ABCD có cạnh bằng 8. Trên cạnh BC lấy điểm M sao cho BM 5. Gọi N là giao điểm của đường thẳng CD và đường thẳng vuông góc với AM tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. + Chọn ngẫu nhiên một số tự nhiên có 4 chữ số. Tính xác suất để số được chọn là số có 4 chữ số thỏa mãn chữ số đứng sau lớn hơn chữ số đứng trước.